Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cardiovasc Res ; 117(2): 472-483, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-32061134

RESUMO

AIMS: NOS1AP single-nucleotide polymorphisms (SNPs) correlate with QT prolongation and cardiac sudden death in patients affected by long QT syndrome type 1 (LQT1). NOS1AP targets NOS1 to intracellular effectors. We hypothesize that NOS1AP SNPs cause NOS1 dysfunction and this may converge with prolonged action-potential duration (APD) to facilitate arrhythmias. Here we test (i) the effects of NOS1 inhibition and their interaction with prolonged APD in a guinea pig cardiomyocyte (GP-CMs) LQT1 model; (ii) whether pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from LQT1 patients differing for NOS1AP variants and mutation penetrance display a phenotype compatible with NOS1 deficiency. METHODS AND RESULTS: In GP-CMs, NOS1 was inhibited by S-Methyl-L-thiocitrulline acetate (SMTC) or Vinyl-L-NIO hydrochloride (L-VNIO); LQT1 was mimicked by IKs blockade (JNJ303) and ß-adrenergic stimulation (isoproterenol). hiPSC-CMs were obtained from symptomatic (S) and asymptomatic (AS) KCNQ1-A341V carriers, harbouring the minor and major alleles of NOS1AP SNPs (rs16847548 and rs4657139), respectively. In GP-CMs, NOS1 inhibition prolonged APD, enhanced ICaL and INaL, slowed Ca2+ decay, and induced delayed afterdepolarizations. Under action-potential clamp, switching to shorter APD suppressed 'transient inward current' events induced by NOS1 inhibition and reduced cytosolic Ca2+. In S (vs. AS) hiPSC-CMs, APD was longer and ICaL larger; NOS1AP and NOS1 expression and co-localization were decreased. CONCLUSION: The minor NOS1AP alleles are associated with NOS1 loss of function. The latter likely contributes to APD prolongation in LQT1 and converges with it to perturb Ca2+ handling. This establishes a mechanistic link between NOS1AP SNPs and aggravation of the arrhythmia phenotype in prolonged repolarization syndromes.


Assuntos
Potenciais de Ação , Proteínas Adaptadoras de Transdução de Sinal/genética , Frequência Cardíaca , Células-Tronco Pluripotentes Induzidas/enzimologia , Canal de Potássio KCNQ1/genética , Mutação , Miócitos Cardíacos/enzimologia , Óxido Nítrico Sintase Tipo I/genética , Polimorfismo de Nucleotídeo Único , Síndrome de Romano-Ward/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sinalização do Cálcio , Linhagem Celular , Predisposição Genética para Doença , Cobaias , Humanos , Canal de Potássio KCNQ1/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Fenótipo , Síndrome de Romano-Ward/diagnóstico , Síndrome de Romano-Ward/enzimologia , Síndrome de Romano-Ward/fisiopatologia , Fatores de Tempo
2.
Matrix Biol Plus ; 6-7: 100022, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33543020

RESUMO

Bladder cancer is one of the most common and aggressive cancers and, regardless of the treatment, often recurs and metastasizes. Thus, a better understanding of the mechanisms regulating urothelial tumorigenesis is critical for the design and implementation of rational therapeutic strategies. We previously discovered that the IGF-IR axis is critical for bladder cancer cell motility and invasion, suggesting a possible role in bladder cancer progression. However, IGF-IR depletion in metastatic bladder cancer cells only partially inhibited anchorage-independent growth. Significantly, metastatic bladder cancer cells have decreased IGF-IR levels but overexpressed the insulin receptor isoform A (IR-A), suggesting that the latter may play a more prevalent role than the IGF-IR in bladder tumor progression. The collagen receptor DDR1 cross-talks with both the IGF-IR and IR in breast cancer, and previous data suggest a role of DDR1 in bladder cancer. Here, we show that DDR1 is expressed in invasive and metastatic, but not in papillary, non-invasive bladder cancer cells. DDR1 is phosphorylated upon stimulation with IGF-I, IGF-II, and insulin, co-precipitates with the IGF-IR, and the IR-A and transient DDR1 depletion severely inhibits IGF-I-induced motility. We further demonstrate that DDR1 interacts with Pyk2 and non-muscle myosin IIA in ligands-dependent fashion, suggesting that it may link the IGF-IR and IR-A to the regulation of F-actin cytoskeleton dynamics. Similarly to the IGF-IR, DDR1 is upregulated in bladder cancer tissues compared to healthy tissue controls. Thus, our findings provide the first characterization of the molecular cross-talk between DDR1 and the IGF-I system and could lead to the identification of novel targets for therapeutic intervention in bladder cancer. Moreover, the expression profiles of IGF-IR, IR-A, DDR1, and downstream effectors could serve as a novel biomarker signature with diagnostic and prognostic significance.

3.
Stem Cell Res ; 36: 101416, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30878014

RESUMO

We generated human induced pluripotent stem cells (hiPSCs) from a symptomatic Long QT Syndrome (LQTS) type 1 patient, belonging to a South African (SA) founder population segregating the heterozygous mutation c.1022C > T p.A341V on the KCNQ1 gene. The patient is also homozygous for the two minor variants rs4657139 and rs16847548 on the NOS1AP gene, associated with greater risk for cardiac arrest and sudden death in LQTS mutation carriers of the founder population. hiPSCs, obtained using four retroviruses encoding the reprogramming factors OCT4, SOX2, cMYC and KLF4, display pluripotent stem cell characteristics, and can be differentiated into spontaneously beating cardiomyocytes (hiPSC-CMs).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular , Células-Tronco Pluripotentes Induzidas , Canal de Potássio KCNQ1/genética , Síndrome de Romano-Ward/genética , Diferenciação Celular , Técnicas de Reprogramação Celular , Análise Mutacional de DNA , Feminino , Heterozigoto , Homozigoto , Humanos , Cariótipo , Fator 4 Semelhante a Kruppel , Pessoa de Meia-Idade
4.
Stem Cell Res ; 39: 101510, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398660

RESUMO

We generated PSMi001-A and PSMi008-A hiPSC lines from two individuals belonging to a South African (SA) founder population in which the malignant KCNQ1-A341V mutation cosegregates with the Long QT Syndrome (LQTS) phenotype. PSMi001-A was derived from an asymptomatic KCNQ1-A341V mutation carrier, whereas PSMi008-A was derived from a healthy non-mutation carrier, heterozygous for the minor variant rs16847548 on the NOS1AP gene, associated with QT prolongation in the general population, and with a greater risk for cardiac arrest in the affected members of the SA founder population. The hiPSCs, generated using the Yamanaka's retroviruses, display pluripotent stem cell features and trilineage differentiation potential.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Parada Cardíaca/genética , Parada Cardíaca/metabolismo , Humanos , Imuno-Histoquímica , Cariotipagem , Mutação/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/citologia , África do Sul
6.
Methods Mol Biol ; 1806: 121-130, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29956273

RESUMO

Progranulin has emerged in recent years as an important regulator of various biological functions including cell proliferation, wound healing, motility, and protection from apoptosis. Progranulin is also critical for transformation as established in several cancer models.Progranulin biological responses elicit through the activation of the Akt and MAPK pathways, which are critical for progranulin downstream signaling.In this chapter various experimental approaches aiming at detecting progranulin-mediated Akt and MAPK activation will be discussed.


Assuntos
Bioquímica/métodos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Progranulinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Anticorpos/metabolismo , Ativação Enzimática , Humanos , Immunoblotting , Sistema de Sinalização das MAP Quinases , Fosforilação , Coloração e Rotulagem
7.
Int J Cardiol ; 237: 49-52, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28408106

RESUMO

The development of human induced pluripotent stem cell (iPSC) technology has revitalized the efforts made in the last decade to exploit the potential of human embryonic stem cells (ESCs) for scientific research. In the field of cardiac arrhythmias, the possibility of generating an unlimited amount of patient-specific cardiomyocyte-like cells (iPSC-CMs) has clear advantages compared with the use of ESC-derived cardiac cells. In particular, with the introduction and implementation of the large-scale precision medicine initiative, we anticipate that the iPSC technology will play an important role in the advancement of cardiovascular research and medicine. This platform is not free from technical limitations that must be carefully taken into account; however, the utility of iPSC-CMs in disease modeling and drug testing studies is hardly questionable. Here, we summarize some of the progresses made in the field of iPSC technology applied to inherited cardiac arrhythmias, with particular emphasis on the use of iPSC-CMs for modelling the long QT syndrome and for the development of personalized drug and molecular therapies. The growing role of iPSC technology in the practice of precision medicine will also be discussed.


Assuntos
Arritmias Cardíacas/terapia , Tecnologia Biomédica/tendências , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/transplante , Miócitos Cardíacos/transplante , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatologia , Diferenciação Celular/fisiologia , Previsões , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Medicina de Precisão/tendências
8.
Oncotarget ; 7(26): 39980-39995, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27220888

RESUMO

We have recently demonstrated a critical role for progranulin in bladder cancer. Progranulin contributes, as an autocrine growth factor, to the transformed phenotype by modulating Akt-and MAPK-driven motility, invasion and anchorage-independent growth. Progranulin also induces F-actin remodeling by interacting with the F-actin binding protein drebrin. In addition, progranulin is overexpressed in invasive bladder cancer compared to normal tissue controls, suggesting that progranulin might play a key role in driving the transition to the invasive phenotype of urothelial cancer. However, it is not established whether targeting progranulin could have therapeutic effects on bladder cancer. In this study, we stably depleted urothelial cancer cells of endogenous progranulin by shRNA approaches and determined that progranulin depletion severely inhibited the ability of tumorigenic urothelial cancer cells to migrate, invade and grow in anchorage-independency. We further demonstrate that progranulin expression is critical for tumor growth in vivo, in both xenograft and orthotopic tumor models. Notably, progranulin levels correlated with response to cisplatin treatment and were upregulated in bladder tumors. Our data indicate that progranulin may constitute a novel target for therapeutic intervention in bladder tumors. In addition, progranulin may serve as a novel biomarker for bladder cancer.


Assuntos
Cisplatino/farmacologia , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Actinas/metabolismo , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , Camundongos Transgênicos , Invasividade Neoplásica , Transplante de Neoplasias , Fenótipo , Progranulinas , RNA Interferente Pequeno/metabolismo , Urotélio/patologia
9.
Endocrinology ; 156(1): 58-70, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25365768

RESUMO

The growth factor progranulin is as an important regulator of transformation in several cellular systems. We have previously demonstrated that progranulin acts as an autocrine growth factor and stimulates motility, proliferation, and anchorage-independent growth of castration-resistant prostate cancer cells, supporting the hypothesis that progranulin may play a critical role in prostate cancer progression. However, the mechanisms regulating progranulin action in castration-resistant prostate cancer cells have not been characterized. Sortilin, a single-pass type I transmembrane protein of the vacuolar protein sorting 10 family, binds progranulin in neurons and negatively regulates progranulin signaling by mediating progranulin targeting for lysosomal degradation. However, whether sortilin is expressed in prostate cancer cells and plays any role in regulating progranulin action has not been established. Here, we show that sortilin is expressed at very low levels in castration-resistant PC3 and DU145 cells. Significantly, enhancing sortilin expression in PC3 and DU145 cells severely diminishes progranulin levels and inhibits motility, invasion, proliferation, and anchorage-independent growth. In addition, sortilin overexpression negatively modulates Akt (protein kinase B, PKB) stability. These results are recapitulated by depleting endogenous progranulin in PC3 and DU145 cells. On the contrary, targeting sortilin by short hairpin RNA approaches enhances progranulin levels and promotes motility, invasion, and anchorage-independent growth. We dissected the mechanisms of sortilin action and demonstrated that sortilin promotes progranulin endocytosis through a clathrin-dependent pathway, sorting into early endosomes and subsequent lysosomal degradation. Collectively, these results point out a critical role for sortilin in regulating progranulin action in castration-resistant prostate cancer cells, suggesting that sortilin loss may contribute to prostate cancer progression.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Linhagem Celular Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Progranulinas
10.
Artigo em Inglês | MEDLINE | ID: mdl-25566192

RESUMO

The insulin-like growth factor system and its two major receptors, the IGF receptor I (IGF-IR) and IR, plays a central role in a variety of physiological cellular processes including growth, differentiation, motility, and glucose homeostasis. The IGF-IR is also essential for tumorigenesis through its capacity to protect cancer cells from apoptosis. The IR is expressed in two isoforms: the IR isoform A (IR-A) and isoform B (IR-B). While the role of the IR-B in the regulation of metabolic effects has been known for several years, more recent evidence suggests that the IR, and in particular the IR-A, may be involved in the pathogenesis of cancer. Ligand-mediated endocytosis of tyrosine-kinases receptors plays a critical role in modulating the duration and intensity of receptors action but while the signaling pathways induced by the IGF-IR and IR are quite characterized, very little is still known about the mechanisms and proteins that regulate ligand-induced IGF-IR and IR endocytosis and trafficking. In addition, how these processes affect receptor downstream signaling has not been fully characterized. Here, we discuss the current understanding of the mechanisms and proteins regulating IGF-IR and IR endocytosis and sorting and their implications in modulating ligand-induced biological responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA