Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2318029121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38950360

RESUMO

Indonesia has experienced rapid primary forest loss, second only to Brazil in modern history. We examined the fates of Indonesian deforested areas, immediately after clearing and over time, to quantify deforestation drivers in Indonesia. Using time-series satellite data, we tracked degradation and clearing events in intact and degraded natural forests from 1991 to 2020, as well as land use trajectories after forest loss. While an estimated 7.8 Mha (SE = 0.4) of forest cleared during this period had been planted with oil palms by 2020, another 8.8 Mha (SE = 0.4) remained unused. Of the 28.4 Mha (SE = 0.7) deforested, over half were either initially left idle or experienced crop failure before a land use could be detected, and 44% remained unused for 5 y or more. A majority (54%) of these areas were cleared mechanically (not by escaped fires), and in cases where idle lands were eventually converted to productive uses, oil palm plantations were by far the most common outcome. The apparent deliberate creation of idle deforested land in Indonesia and subsequent conversion of idle areas to oil palm plantations indicates that speculation and land banking for palm oil substantially contribute to forest loss, although failed plantations could also contribute to this dynamic. We also found that in Sumatra, few lowland forests remained, suggesting that a lack of remaining forest appropriate for palm oil production, together with an extensive area of banked deforested land, may partially explain slowing forest loss in Indonesia in recent years.


Assuntos
Conservação dos Recursos Naturais , Florestas , Indonésia , Árvores/crescimento & desenvolvimento , Agricultura
2.
Nature ; 563(7732): E26, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30275480

RESUMO

In this Letter, errors in Supplementary Table 1 have been corrected.

3.
Nature ; 560(7720): 639-643, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089903

RESUMO

Land change is a cause and consequence of global environmental change1,2. Changes in land use and land cover considerably alter the Earth's energy balance and biogeochemical cycles, which contributes to climate change and-in turn-affects land surface properties and the provision of ecosystem services1-4. However, quantification of global land change is lacking. Here we analyse 35 years' worth of satellite data and provide a comprehensive record of global land-change dynamics during the period 1982-2016. We show that-contrary to the prevailing view that forest area has declined globally5-tree cover has increased by 2.24 million km2 (+7.1% relative to the 1982 level). This overall net gain is the result of a net loss in the tropics being outweighed by a net gain in the extratropics. Global bare ground cover has decreased by 1.16 million km2 (-3.1%), most notably in agricultural regions in Asia. Of all land changes, 60% are associated with direct human activities and 40% with indirect drivers such as climate change. Land-use change exhibits regional dominance, including tropical deforestation and agricultural expansion, temperate reforestation or afforestation, cropland intensification and urbanization. Consistently across all climate domains, montane systems have gained tree cover and many arid and semi-arid ecosystems have lost vegetation cover. The mapped land changes and the driver attributions reflect a human-dominated Earth system. The dataset we developed may be used to improve the modelling of land-use changes, biogeochemical cycles and vegetation-climate interactions to advance our understanding of global environmental change1-4,6.


Assuntos
Planeta Terra , Ecossistema , Monitoramento Ambiental , Atividades Humanas/estatística & dados numéricos , Agricultura/estatística & dados numéricos , Agricultura/tendências , Mudança Climática/estatística & dados numéricos , Agricultura Florestal/estatística & dados numéricos , Agricultura Florestal/tendências , Atividades Humanas/tendências , Imagens de Satélites , Árvores/crescimento & desenvolvimento
4.
Proc Natl Acad Sci U S A ; 116(2): 428-435, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30559198

RESUMO

Brazil has become a global leader in the production of commodity row crops such as soybean, sugarcane, cotton, and corn. Here, we report an increase in Brazilian cropland extent from 26.0 Mha in 2000 to 46.1 Mha in 2014. The states of Maranhão, Tocantins, Piauí, Bahia (collectively MATOPIBA), Mato Grosso, Mato Grosso do Sul, and Pará all more than doubled in cropland extent. The states of Goiás, Minas Gerais, and São Paulo each experienced >50% increases. The vast majority of expansion, 79%, occurred on repurposed pasture lands, and 20% was from the conversion of natural vegetation. Area of converted Cerrado savannas was nearly 2.5 times that of Amazon forests, and accounted for more than half of new cropland in MATOPIBA. Spatiotemporal dynamics of cropland expansion reflect market conditions, land use policies, and other factors. Continued extensification of cropland across Brazil is possible and may be likely under current conditions, with attendant benefits for and challenges to development.


Assuntos
Conservação dos Recursos Naturais , Produção Agrícola , Floresta Úmida , Brasil , Humanos
5.
Remote Sens Environ ; 191: 328-341, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31346298

RESUMO

Accuracy assessment is a standard protocol of National Land Cover Database (NLCD) mapping. Here we report agreement statistics between map and reference labels for NLCD 2011, which includes land cover for ca. 2001, ca. 2006, and ca. 2011. The two main objectives were assessment of agreement between map and reference labels for the three, single-date NLCD land cover products at Level II and Level I of the classification hierarchy, and agreement for 17 land cover change reporting themes based on Level I classes (e.g., forest loss; forest gain; forest, no change) for three change periods (2001-2006, 2006-2011, and 2001-2011). The single-date overall accuracies were 82%, 83%, and 83% at Level II and 88%, 89%, and 89% at Level I for 2011, 2006, and 2001, respectively. Many class-specific user's accuracies met or exceeded a previously established nominal accuracy benchmark of 85%. Overall accuracies for 2006 and 2001 land cover components of NLCD 2011 were approximately 4% higher (at Level II and Level I) than the overall accuracies for the same components of NLCD 2006. The high Level I overall, user's, and producer's accuracies for the single-date eras in NLCD 2011 did not translate into high class-specific user's and producer's accuracies for many of the 17 change reporting themes. User's accuracies were high for the no change reporting themes, commonly exceeding 85%, but were typically much lower for the reporting themes that represented change. Only forest loss, forest gain, and urban gain had user's accuracies that exceeded 70%. Lower user's accuracies for the other change reporting themes may be attributable to the difficulty in determining the context of grass (e.g., open urban, grassland, agriculture) and between the components of the forest-shrubland-grassland gradient at either the mapping phase, reference label assignment phase, or both. NLCD 2011 user's accuracies for forest loss, forest gain, and urban gain compare favorably with results from other land cover change accuracy assessments.

6.
Folia Primatol (Basel) ; 88(3): 307-322, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28957800

RESUMO

Forest disturbance and human encroachment have the potential to influence intestinal parasite communities in animal hosts by modifying nutritional health, physiological stress, host densities, contact rates, and ranging patterns. Anthropogenic disturbances also have the ability to affect the ecological landscape of parasitic disease, potentially impacting the health of both wildlife and people. Our research investigated the association of forest disturbance and human encroachment on intestinal parasite communities in mantled howler monkeys, Alouatta palliata aequatorialis. We found that individual parasite species prevalence was associated with group size and forest disturbance. Proximity to people was not a direct factor influencing intestinal parasitism; rather, several human proximity indices were related to group size, which was in turn related to overall species richness and the presence of specific parasite species. These results, coupled with previous findings, suggest that anthropogenic disturbances are likely influencing intestinal parasite communities. Though no single study has definitively explained all relationships between anthropogenic disturbances and intestinal parasitism, we propose that our models are appropriate for meta-analysis testing across other species and environments.


Assuntos
Alouatta , Enteropatias Parasitárias/veterinária , Doenças dos Macacos/epidemiologia , Animais , Equador/epidemiologia , Agricultura Florestal , Atividades Humanas , Enteropatias Parasitárias/epidemiologia , Enteropatias Parasitárias/parasitologia , Modelos Biológicos , Doenças dos Macacos/parasitologia
7.
Environ Monit Assess ; 189(4): 170, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28316025

RESUMO

Several spatial forest disturbance datasets exist for the conterminous USA. The major problem with forest disturbance mapping is that variability between map products leads to uncertainty regarding the actual rate of disturbance. In this article, harmonized maps were produced from multiple data sources (i.e., Global Forest Change, LANDFIRE Vegetation Disturbance, National Land Cover Database, Vegetation Change Tracker, and Web-Enabled Landsat Data). The harmonization process involved fitting common class ontologies and determining spatial congruency to produce forest disturbance maps for four time intervals (1986-1992, 1992-2001, 2001-2006, and 2006-2011). Pixels mapped as disturbed for two or more datasets were labeled as disturbed in the harmonized maps. The primary advantage gained by harmonization was improvement in commission error rates relative to the individual disturbance products. Disturbance omission errors were high for both harmonized and individual forest disturbance maps due to underlying limitations in mapping subtle disturbances with Landsat classification algorithms. To enhance the value of the harmonized disturbance products, we used fire perimeter maps to add information on the cause of disturbance.


Assuntos
Monitoramento Ambiental , Florestas , Conjuntos de Dados como Assunto , Incêndios , Árvores , Estados Unidos
8.
Remote Sens Environ ; 186: 465-478, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30416212

RESUMO

The potential research, policy and management applications of global burned area products place a high priority on rigorous, quantitative assessment of their accuracy. Such an assessment can be achieved by implementing validation methods employing design-based inference in which the independent reference data are selected via a probability sampling design. The majority of global burned area validation exercises use Landsat data to derive the independent reference data. This paper presents a three-dimensional sampling grid that allows for probability sampling of Landsat data in both space and time. To sample the globe in the spatial domain with non-overlapping sampling units, the Thiessen Scene Area (TSA) tessellation of the Landsat path/row geometry is used. The TSA grid is combined in time with the 16-day Landsat acquisition calendar to provide three-dimensional elements (voxels).This allows for implementation of stratified random sampling designs, where not only the location but also the time interval of the independent reference data is explicitly drawn by probability sampling. To illustrate this, we use a stratification methodology based on the Olson global ecoregion map and on the MODIS global active fire product. Using the global MODIS burned area product to establish a hypothetical population of reference data, we show that a sampling scheme based on the proposed stratification with equal sample allocation among strata is effective in reducing the standard errors of accuracy and area estimators compared to simple random sampling. Globally, the standard errors were reduced by 63%, 54%, 22% and 53% for overall accuracy, omission error, commission error and total burned area estimates respectively. By incorporating probability sampling in both the spatial and temporal domains, the present study establishes the foundation for rigorous design-based validation of global burned area products and, more generally, of terrestrial thematic products that have high temporal variability.

9.
Appl Environ Microbiol ; 81(1): 100-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326296

RESUMO

American chestnut (Castanea dentata [Marsh.] Borkh.) dominated the eastern forests of North America, serving as a keystone species both ecologically and economically until the introduction of the chestnut blight, Cryphonectria parasitica, functionally eradicated the species. Restoration efforts include genetic transformation utilizing genes such as oxalate oxidase to produce potentially blight-resistant chestnut trees that could be released back into the native range. However, before such a release can be undertaken, it is necessary to assess nontarget impacts. Since oxalate oxidase is meant to combat a fungal pathogen, we are particularly interested in potential impacts of this transgene on beneficial fungi. This study compares ectomycorrhizal fungal colonization on a transgenic American chestnut clone expressing enhanced blight resistance to a wild-type American chestnut, a conventionally bred American-Chinese hybrid chestnut, and other Fagaceae species. A greenhouse bioassay used soil from two field sites with different soil types and land use histories. The number of colonized root tips was counted, and fungal species were identified using morphology, restriction fragment length polymorphism (RFLP), and DNA sequencing. Results showed that total ectomycorrhizal colonization varied more by soil type than by tree species. Individual fungal species varied in their colonization rates, but there were no significant differences between colonization on transgenic and wild-type chestnuts. This study shows that the oxalate oxidase gene can increase resistance against Cryphonectria parasitica without changing the colonization rate for ectomycorrhizal species. These findings will be crucial for a potential deregulation of blight-resistant American chestnuts containing the oxalate oxidase gene.


Assuntos
Fagaceae/microbiologia , Micorrizas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/microbiologia , DNA Fúngico/química , DNA Fúngico/genética , Dados de Sequência Molecular , Micorrizas/classificação , Micorrizas/isolamento & purificação , Oxirredutases/genética , Oxirredutases/metabolismo , Raízes de Plantas/microbiologia , Polimorfismo de Fragmento de Restrição , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA
10.
Proc Natl Acad Sci U S A ; 107(19): 8650-5, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20421467

RESUMO

A globally consistent methodology using satellite imagery was implemented to quantify gross forest cover loss (GFCL) from 2000 to 2005 and to compare GFCL among biomes, continents, and countries. GFCL is defined as the area of forest cover removed because of any disturbance, including both natural and human-induced causes. GFCL was estimated to be 1,011,000 km(2) from 2000 to 2005, representing 3.1% (0.6% per year) of the year 2000 estimated total forest area of 32,688,000 km(2). The boreal biome experienced the largest area of GFCL, followed by the humid tropical, dry tropical, and temperate biomes. GFCL expressed as the proportion of year 2000 forest cover was highest in the boreal biome and lowest in the humid tropics. Among continents, North America had the largest total area and largest proportion of year 2000 GFCL. At national scales, Brazil experienced the largest area of GFCL over the study period, 165,000 km(2), followed by Canada at 160,000 km(2). Of the countries with >1,000,000 km(2) of forest cover, the United States exhibited the greatest proportional GFCL and the Democratic Republic of Congo the least. Our results illustrate a pervasive global GFCL dynamic. However, GFCL represents only one component of net change, and the processes driving GFCL and rates of recovery from GFCL differ regionally. For example, the majority of estimated GFCL for the boreal biome is due to a naturally induced fire dynamic. To fully characterize global forest change dynamics, remote sensing efforts must extend beyond estimating GFCL to identify proximate causes of forest cover loss and to estimate recovery rates from GFCL.


Assuntos
Conservação dos Recursos Naturais , Internacionalidade , Árvores/fisiologia , Ecossistema , Geografia
11.
Environ Entomol ; 52(4): 692-708, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37235636

RESUMO

Glycobius speciosus (Say) was studied in New York State to elucidate poorly known aspects of its biology. Head capsule size from excavated larvae coupled with gallery lengths measured at the time of excavation was used to characterize larval development. Partial life tables indicated nearly 20% of G. speciosus survive to adulthood. Larvae experienced 30% of their mortality during early development, 27% during mid-larval development, and 43% during late larval development. Predation by hairy woodpeckers, Dryobates villosus (Linnaeus) (Piciformes: Picidae), the only unambiguous source of mortality, accounted for 43% mortality in naturally infested trees located and followed 2004-2009, and 74% late instar mortality. One parasitoid, Dolichomitus irritator (Fabricius) (Hymenoptera: Ichneumonidae), was recovered from a single larva. Beetles emerged between 316 accumulated DD (base 10 °C) and 648 DD. Males emerged prior to, or simultaneously with, females and lived longer. Female fecundity averaged 41.3 ± 6 eggs. Larval eclosion occurred 7-10 days after oviposition. Non-functional ovipositors observed in 16% of females represented an appreciable reproductive loss. In 77% of infested trees 1 oviposition site was located and in 70% of oviposition sites examined only 1 or 2 larvae successfully eclosed, penetrated the bark to the phloem-xylem interface, and began feeding. Beetles preferred southern and eastern aspects for oviposition which occurred preferentially on the lower bole (<20 cm). Male beetles had longer and wider antennae than females, pronotal pits containing gland pores, and a straight to concave posterior margin of the terminal sternite compared to the more rounded margin of females.


Assuntos
Besouros , Himenópteros , Feminino , Masculino , Animais , Larva , Ecologia , Árvores , Oviposição
12.
Proc Natl Acad Sci U S A ; 105(27): 9439-44, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18591652

RESUMO

Forest cover is an important input variable for assessing changes to carbon stocks, climate and hydrological systems, biodiversity richness, and other sustainability science disciplines. Despite incremental improvements in our ability to quantify rates of forest clearing, there is still no definitive understanding on global trends. Without timely and accurate forest monitoring methods, policy responses will be uninformed concerning the most basic facts of forest cover change. Results of a feasible and cost-effective monitoring strategy are presented that enable timely, precise, and internally consistent estimates of forest clearing within the humid tropics. A probability-based sampling approach that synergistically employs low and high spatial resolution satellite datasets was used to quantify humid tropical forest clearing from 2000 to 2005. Forest clearing is estimated to be 1.39% (SE 0.084%) of the total biome area. This translates to an estimated forest area cleared of 27.2 million hectares (SE 2.28 million hectares), and represents a 2.36% reduction in area of humid tropical forest. Fifty-five percent of total biome clearing occurs within only 6% of the biome area, emphasizing the presence of forest clearing "hotspots." Forest loss in Brazil accounts for 47.8% of total biome clearing, nearly four times that of the next highest country, Indonesia, which accounts for 12.8%. Over three-fifths of clearing occurs in Latin America and over one-third in Asia. Africa contributes 5.4% to the estimated loss of humid tropical forest cover, reflecting the absence of current agro-industrial scale clearing in humid tropical Africa.


Assuntos
Umidade , Comunicações Via Satélite/instrumentação , Árvores , Clima Tropical , Geografia
13.
Sci Adv ; 7(14)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33811082

RESUMO

Across South America, the expansion of commodity land uses has underpinned substantial economic development at the expense of natural land cover and associated ecosystem services. Here, we show that such human impact on the continent's land surface, specifically land use conversion and natural land cover modification, expanded by 268 million hectares (Mha), or 60%, from 1985 to 2018. By 2018, 713 Mha, or 40%, of the South American landmass was impacted by human activity. Since 1985, the area of natural tree cover decreased by 16%, and pasture, cropland, and plantation land uses increased by 23, 160, and 288%, respectively. A substantial area of disturbed natural land cover, totaling 55 Mha, had no discernable land use, representing land that is degraded in terms of ecosystem function but not economically productive. These results illustrate the extent of ongoing human appropriation of natural ecosystems in South America, which intensifies threats to ecosystem-scale functions.

14.
Nat Sustain ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-34377840

RESUMO

A prominent goal of policies mitigating climate change and biodiversity loss is to achieve zero-deforestation in the global supply chain of key commodities, such as palm oil and soybean. However, the extent and dynamics of deforestation driven by commodity expansion are largely unknown. Here we mapped annual soybean expansion in South America between 2000 and 2019 by combining satellite observations and sample field data. From 2000-2019, the area cultivated with soybean more than doubled from 26.4 Mha to 55.1 Mha. Most soybean expansion occurred on pastures originally converted from natural vegetation for cattle production. The most rapid expansion occurred in the Brazilian Amazon, where soybean area increased more than 10-fold, from 0.4 Mha to 4.6 Mha. Across the continent, 9% of forest loss was converted to soybean by 2016. Soy-driven deforestation was concentrated at the active frontiers, nearly half located in the Brazilian Cerrado. Efforts to limit future deforestation must consider how soybean expansion may drive deforestation indirectly by displacing pasture or other land uses. Holistic approaches that track land use across all commodities coupled with vegetation monitoring are required to maintain critical ecosystem services.

15.
Sci Adv ; 6(11): eaax8574, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32195340

RESUMO

Tropical forest fragmentation results in habitat and biodiversity loss and increased carbon emissions. Here, we link an increased likelihood of tropical forest loss to decreasing fragment size, particularly in primary forests. The relationship holds for protected areas, albeit with half the rate of loss compared with all fragments. The fact that disturbance increases as primary forest fragment size decreases reflects higher land use pressures and improved access for resource extraction and/or conversion in smaller fragments. Large remaining forest fragments are found in the Amazon and Congo Basins and Insular Southeast Asia, with the majority of large extent/low loss fragments located in the Amazon. Tropical areas without large fragments, including Central America, West Africa, and mainland Southeast Asia, have higher loss within and outside of protected areas. Results illustrate the need for rigorous land use planning, management, and enforcement in maintaining large tropical forest fragments and restoring regions of advanced fragmentation.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Florestas , Modelos Biológicos , Clima Tropical
16.
Environ Entomol ; 38(4): 1235-40, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19689905

RESUMO

Beech scale, Cryptococcus fagisuga Lindinger, is a non-native invasive insect associated with beech bark disease. A quantitative method of measuring viable scale density at the levels of the individual tree and localized bark patches was developed. Bark patches (10 cm(2)) were removed at 0, 1, and 2 m above the ground and at the four cardinal directions from 13 trees in northern New York and 12 trees in northern Michigan. Digital photographs of each patch were made, and the wax mass area was measured from two random 1-cm(2) subsamples on each bark patch using image analysis software. Viable scale insects were counted after removing the wax under a dissecting microscope. Separate regression analyses at the whole tree level for the New York and Michigan sites each showed a strong positive relationship of wax mass area with the number of underlying viable scale insects. The relationships for the New York and Michigan data were not significantly different from each other, and when pooling data from the two sites, there was still a significant positive relationship between wax mass area and the number of scale insects. The relationships between viable scale insects and wax mass area were different at the 0-, 1-, and 2-m sampling heights but do not seem to affect the relationship. This method does not disrupt the insect or its interactions with the host tree.


Assuntos
Fagus , Hemípteros , Controle de Insetos/métodos , Ceras/análise , Animais , Hemípteros/fisiologia , Processamento de Imagem Assistida por Computador , Densidade Demográfica
17.
Sci Adv ; 4(11): eaat2993, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30417092

RESUMO

A regional assessment of forest disturbance dynamics from 2000 to 2014 was performed for the Congo Basin countries using time-series satellite data. Area of forest loss was estimated and disaggregated by predisturbance forest type and direct disturbance driver. An estimated 84% of forest disturbance area in the region is due to small-scale, nonmechanized forest clearing for agriculture. Annual rates of small-scale clearing for agriculture in primary forests and woodlands doubled between 2000 and 2014, mirroring increasing population growth. Smallholder clearing in the Democratic Republic of the Congo alone accounted for nearly two-thirds of total forest loss in the basin. Selective logging is the second most significant disturbance driver, contributing roughly 10% of regional gross forest disturbance area and more than 60% of disturbance area in Gabon. Forest loss due to agro-industrial clearing along the Gulf of Guinea coast more than doubled in the last half of the study period. Maintaining natural forest cover in the Congo Basin into the future will be challenged by an expected fivefold population growth by 2100 and allocation of industrial timber harvesting and large-scale agricultural development inside remaining old-growth forests.


Assuntos
Conservação dos Recursos Naturais , Florestas , Árvores/fisiologia , Agricultura , Congo , Indústrias
18.
Sci Adv ; 3(4): e1601047, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28439536

RESUMO

Deforestation rates in primary humid tropical forests of the Brazilian Legal Amazon (BLA) have declined significantly since the early 2000s. Brazil's national forest monitoring system provides extensive information for the BLA but lacks independent validation and systematic coverage outside of primary forests. We use a sample-based approach to consistently quantify 2000-2013 tree cover loss in all forest types of the region and characterize the types of forest disturbance. Our results provide unbiased forest loss area estimates, which confirm the reduction of primary forest clearing (deforestation) documented by official maps. By the end of the study period, nonprimary forest clearing, together with primary forest degradation within the BLA, became comparable in area to deforestation, accounting for an estimated 53% of gross tree cover loss area and 26 to 35% of gross aboveground carbon loss. The main type of tree cover loss in all forest types was agroindustrial clearing for pasture (63% of total loss area), followed by small-scale forest clearing (12%) and agroindustrial clearing for cropland (9%), with natural woodlands being directly converted into croplands more often than primary forests. Fire accounted for 9% of the 2000-2013 primary forest disturbance area, with peak disturbances corresponding to droughts in 2005, 2007, and 2010. The rate of selective logging exploitation remained constant throughout the study period, contributing to forest fire vulnerability and degradation pressures. As the forest land use transition advances within the BLA, comprehensive tracking of forest transitions beyond primary forest loss is required to achieve accurate carbon accounting and other monitoring objectives.


Assuntos
Conservação dos Recursos Naturais , Florestas , Modelos Biológicos , Brasil
19.
J Parasitol ; 101(3): 341-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25686475

RESUMO

An analysis of gastrointestinal parasites of Ecuadorian mantled howler monkeys, Alouatta palliata aequatorialis, was conducted based on examination of fecal smears, flotations, and sedimentations. At least 1 type of parasite was detected in 97% of the 96 fecal samples screened across 19 howler monkey groups using these techniques. Samples averaged 3.6 parasite species per individual (±1.4 SD). Parasites included species representing genera of 2 apicomplexans: Cyclospora sp. (18% of individual samples) and Isospora sp. (3%); 6 other protozoa: Balantidium sp. (9%), Blastocystis sp. (60%), Chilomastix sp. (4%), Dientamoeba sp. (3%), Entamoeba species (56%), Iodamoeba sp. (5%); 4 nematodes: Enterobius sp. (3%), Capillaria sp. (78%), Strongyloides spp. (88%) which included 2 morphotypes, Trypanoxyuris sp. (12%); and the platyhelminth Controrchis sp. (15%). A statistically significant positive correlation was found between group size and each of 3 different estimators of parasite species richness adjusted for sampling effort (ICE: r(2) = 0.24, P = 0.05; Chao2: r(2) = 0.25, P = 0.05, and Jackknife: r(2) = 0.31, P = 0.03). Two significant associations between co-infecting parasites were identified. Based on the prevalence data, individuals infected with Balantidium sp. were more likely to also be infected with Isospora sp. (χ(2) = 6.02, P = 0.01), while individuals harboring Chilomastix sp. were less likely to have Capillaria sp. present (χ(2) = 4.03, P = 0.04).


Assuntos
Alouatta/parasitologia , Fezes/parasitologia , Gastroenteropatias/veterinária , Enteropatias Parasitárias/veterinária , Doenças dos Macacos/parasitologia , Animais , Apicomplexa/classificação , Apicomplexa/isolamento & purificação , Equador/epidemiologia , Eucariotos/classificação , Eucariotos/isolamento & purificação , Gastroenteropatias/epidemiologia , Gastroenteropatias/parasitologia , Enteropatias Parasitárias/epidemiologia , Enteropatias Parasitárias/parasitologia , Doenças dos Macacos/epidemiologia , Nematoides/classificação , Nematoides/isolamento & purificação , Platelmintos/classificação , Platelmintos/isolamento & purificação , Prevalência
20.
Environ Manage ; 32(5): 572-88, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15015696

RESUMO

Landscape pattern and composition metrics are potential indicators for broad-scale monitoring of change and for relating change to human and ecological processes. We used a probability sample of 20-km x 20-km sampling blocks to characterize landscape composition and pattern in five US ecoregions: the Middle Atlantic Coastal Plain, Southeastern Plains, Northern Piedmont, Piedmont, and Blue Ridge Mountains. Land use/and cover (LULC) data for five dates between 1972 and 2000 were obtained for each sample block. Analyses focused on quantifying trends in selected landscape pattern metrics by ecoregion and comparing trends in land cover proportions and pattern metrics among ecoregions. Repeated measures analysis of the landscape pattern documented a statistically significant trend in all five ecoregions towards a more fine-grained landscape from the early 1970s through 2000. The ecologically important forest cover class also became more fine-grained with time (i.e., more numerous and smaller forest patches). Trends in LULC, forest edge, and forest percent like adjacencies differed among ecoregions. These results suggest that ecoregions provide a geographically coherent way to regionalize the story of national land use and land cover change in the United States. This study provides new information on LULC change in the southeast United States. Previous studies of the region from the 1930s to the 1980s showed a decrease in landscape fragmentation and an increase in percent forest, while this study showed an increase in forest fragmentation and a loss of forest cover.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Planejamento Ambiental , Sistemas de Informação Geográfica , Monitoramento Ambiental , Agricultura Florestal , Sudeste dos Estados Unidos , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA