RESUMO
Tumour necrosis factor receptors (TNF-Rs) and their ligands, tumour necrosis factors, are highly conserved proteins described in all metazoan phyla. They function as inducers of extrinsic apoptotic signalling and facilitate inflammation, differentiation and cell survival. TNF-Rs use distinct adaptor molecules to activate signalling cascades. Fas-associated protein with death domain (FADD) family adaptors often mediate apoptosis, and TNF-R-associated factor (TRAF) family adaptors mediate cell differentiation and inflammation. Most of these pathway components are conserved in cnidarians, and, here, we investigated the Hydra TNF-R. We report that it is related to the ectodysplasin receptor, which is involved in epithelial cell differentiation in mammals. In Hydra, it is localised in epithelial cells with incorporated nematocytes in tentacles and body column, indicating a similar function. Further experiments suggest that it interacts with the Hydra homologue of a TRAF adaptor, but not with FADD proteins. Hydra FADD proteins colocalised with Hydra caspases in death effector filaments and recruited caspases, suggesting that they are part of an apoptotic signalling pathway. Regulating epithelial cell differentiation via TRAF adaptors therefore seems to be an ancient function of TNF-Rs, whereas FADD-caspase interactions may be part of a separate apoptotic pathway.
Assuntos
Hydra , Animais , Apoptose , Caspase 8 , Caspases/metabolismo , Diferenciação Celular , Proteína de Domínio de Morte Associada a Fas/genética , Hydra/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Mechanisms of programmed cell death differ between animals, plants and fungi. In animals, apoptotic cell death depends on caspases and Bcl-2 family proteins. These protein families are only found in multicellular animals, including cnidarians, insects and mammals. In contrast, members of the TMBIM-family of transmembrane proteins are conserved across all eukaryotes. Sequence comparisons of cell death related proteins between phyla indicate strong conservation of the genes involved. However, often it is not known whether this is paralleled by conservation of function. Here we present the first study to support an anti-apoptotic function of Bcl-2 like proteins in the cnidarian Hydra within a physiological context. We used transgenic Hydra expressing GFP-tagged HyBcl-2-like 4 protein in epithelial cells. The protein was localised to mitochondria and able to protect Hydra epithelial cells from apoptosis induced by either the PI(3) kinase inhibitor wortmannin or by starvation. Moreover, we identified members of the TMBIM-family in Hydra including HyBax-Inhibitor-1, HyLifeguard-1a and -1b and HyLifeguard 4. Expressing these TMBIM-family members in Hydra and human HEK cells, we found HyBax-inhibitor-1 protein localised to ER-membranes and HyLifeguard-family members localised to the plasma membrane and Golgi-vesicles. Moreover, HyBax-inhibitor-1 protected human cells from camptothecin induced apoptosis. This work illustrates that the investigated Bcl-2- and TMBIM-family members represent evolutionarily conserved mitochondrial, ER, Golgi and plasma membrane proteins with anti-apoptotic functions. The participation of ER and Golgi proteins in the regulation of programmed cell death might be a very ancient feature.