Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35753604

RESUMO

Most species of octopus experience extreme physical decline after a single reproductive bout which extends over a period of days, weeks, or months before eventual death. Although outward indicators of senescence are widely recognized, comparatively little is known about physiological and neural changes accompanying terminal decline in octopuses. Here, we measured changes in behavioral response to nociceptive stimuli across the lifespan in giant Pacific octopus (GPO), Enteroctopus dofleini, held in public aquariums in the USA. Post-euthanasia, tissue was collected from arm tips, and neural and epithelial cell degeneration was quantified and compared with biopsies of arm tips from healthy, pre-reproductive GPOs. Behavioral assays showed significant changes both in low threshold mechanosensory responses and nociceptive behavioral responses beginning early in senescence and extending until euthanasia. Histology data showed that while the ratio of apoptotic cells to total cell number stayed constant between healthy and senescent GPOs, overall neural and epithelial cell density was significantly lower in terminally senescent octopuses compared with healthy controls. Our data provide new insight into the time-course and causes of sensory dysfunction in senescent cephalopods and suggest proactive welfare management should begin early in the senescence phase, well before animals enter terminal decline.


Assuntos
Octopodiformes , Animais , Senescência Celular , Epitélio , Longevidade , Octopodiformes/fisiologia
2.
Bioorg Med Chem ; 24(19): 4660-4674, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27544588

RESUMO

Autotaxin (ATX) is a ubiquitous ectoenzyme that hydrolyzes lysophosphatidylcholine (LPC) to form the bioactive lipid mediator lysophosphatidic acid (LPA). LPA activates specific G-protein coupled receptors to elicit downstream effects leading to cellular motility, survival, and invasion. Through these pathways, upregulation of ATX is linked to diseases such as cancer and cardiovascular disease. Recent crystal structures confirm that the catalytic domain of ATX contains multiple binding regions including a polar active site, hydrophobic tunnel, and a hydrophobic pocket. This finding is consistent with the promiscuous nature of ATX hydrolysis of multiple and diverse substrates and prior investigations of inhibitor impacts on ATX enzyme kinetics. The current study used virtual screening methods to guide experimental identification and characterization of inhibitors targeting the hydrophobic region of ATX. An initially discovered inhibitor, GRI392104 (IC50 4µM) was used as a lead for synthetic optimization. In total twelve newly synthesized inhibitors of ATX were more potent than GRI392104 and were selective for ATX as they had no effect on other LPC-specific NPP family members or on LPA1-5 GPCR.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lisofosfatidilcolinas/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Diester Fosfórico Hidrolases/química , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA