Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(12): 3125-3142.e25, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33930289

RESUMO

The N6-methyladenosine (m6A) RNA modification is used widely to alter the fate of mRNAs. Here we demonstrate that the C. elegans writer METT-10 (the ortholog of mouse METTL16) deposits an m6A mark on the 3' splice site (AG) of the S-adenosylmethionine (SAM) synthetase pre-mRNA, which inhibits its proper splicing and protein production. The mechanism is triggered by a rich diet and acts as an m6A-mediated switch to stop SAM production and regulate its homeostasis. Although the mammalian SAM synthetase pre-mRNA is not regulated via this mechanism, we show that splicing inhibition by 3' splice site m6A is conserved in mammals. The modification functions by physically preventing the essential splicing factor U2AF35 from recognizing the 3' splice site. We propose that use of splice-site m6A is an ancient mechanism for splicing regulation.


Assuntos
Adenosina/análogos & derivados , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Fator de Processamento U2AF/metabolismo , Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Sequência Conservada/genética , Dieta , Células HeLa , Humanos , Íntrons/genética , Metionina Adenosiltransferase , Metilação , Metiltransferases/química , Camundongos , Mutação/genética , Conformação de Ácido Nucleico , Ligação Proteica , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno , S-Adenosilmetionina , Transcriptoma/genética
2.
Semin Cell Dev Biol ; 127: 133-141, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34823984

RESUMO

Epigenetic inheritance refers to the transmission of phenotypes across generations without affecting the genomic DNA sequence. Even though it has been documented in many species in fungi, animals and plants, the mechanisms underlying epigenetic inheritance are not fully uncovered. Epialleles, the heritable units of epigenetic information, can take the form of several biomolecules, including histones and their post-translational modifications (PTMs). Here, we review the recent advances in the understanding of the transmission of histone variants and histone PTM patterns across generations in C. elegans. We provide a general overview of the intergenerational and transgenerational inheritance of histone PTMs and their modifiers and discuss the interplay among different histone PTMs. We also evaluate soma-germ line communication and its impact on the inheritance of epigenetic traits.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/genética , Epigênese Genética/genética , Histonas/genética , Histonas/metabolismo , Padrões de Herança
3.
PLoS Biol ; 19(7): e3000968, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228701

RESUMO

Centromere protein A (CENP-A) is a histone H3 variant that defines centromeric chromatin and is essential for centromere function. In most eukaryotes, CENP-A-containing chromatin is epigenetically maintained, and centromere identity is inherited from one cell cycle to the next. In the germ line of the holocentric nematode Caenorhabditis elegans, this inheritance cycle is disrupted. CENP-A is removed at the mitosis-to-meiosis transition and is reestablished on chromatin during diplotene of meiosis I. Here, we show that the N-terminal tail of CENP-A is required for the de novo establishment of centromeres, but then its presence becomes dispensable for centromere maintenance during development. Worms homozygous for a CENP-A tail deletion maintain functional centromeres during development but give rise to inviable offspring because they fail to reestablish centromeres in the maternal germ line. We identify the N-terminal tail of CENP-A as a critical domain for the interaction with the conserved kinetochore protein KNL-2 and argue that this interaction plays an important role in setting centromere identity in the germ line. We conclude that centromere establishment and maintenance are functionally distinct in C. elegans.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Proteína Centromérica A/genética , Centrômero , Impressão Genômica , Células Germinativas , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteína Centromérica A/química , Proteína Centromérica A/metabolismo , Cromatina/metabolismo , Cromossomos , Feminino , Homozigoto , Cinetocoros , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Domínios Proteicos
4.
PLoS Genet ; 17(11): e1009873, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748562

RESUMO

Transcription of the human mitochondrial genome and correct processing of the two long polycistronic transcripts are crucial for oxidative phosphorylation. According to the tRNA punctuation model, nucleolytic processing of these large precursor transcripts occurs mainly through the excision of the tRNAs that flank most rRNAs and mRNAs. However, some mRNAs are not punctuated by tRNAs, and it remains largely unknown how these non-canonical junctions are resolved. The FASTK family proteins are emerging as key players in non-canonical RNA processing. Here, we have generated human cell lines carrying single or combined knockouts of several FASTK family members to investigate their roles in non-canonical RNA processing. The most striking phenotypes were obtained with loss of FASTKD4 and FASTKD5 and with their combined double knockout. Comprehensive mitochondrial transcriptome analyses of these cell lines revealed a defect in processing at several canonical and non-canonical RNA junctions, accompanied by an increase in specific antisense transcripts. Loss of FASTKD5 led to the most severe phenotype with marked defects in mitochondrial translation of key components of the electron transport chain complexes and in oxidative phosphorylation. We reveal that the FASTK protein family members are crucial regulators of non-canonical junction and non-coding mitochondrial RNA processing.


Assuntos
Proteínas Mitocondriais/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mitocondrial/metabolismo , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular , Técnicas de Inativação de Genes , Humanos , Proteínas Mitocondriais/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Transcriptoma
5.
Mol Biol Evol ; 39(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36173809

RESUMO

Centromeric histones (CenH3s) are essential for chromosome inheritance during cell division in most eukaryotes. CenH3 genes have rapidly evolved and undergone repeated gene duplications and diversification in many plant and animal species. In Caenorhabditis species, two independent duplications of CenH3 (named hcp-3 for HoloCentric chromosome-binding Protein 3) were previously identified in C. elegans and C. remanei. Using phylogenomic analyses in 32 Caenorhabditis species, we find strict retention of the ancestral hcp-3 gene and 10 independent duplications. Most hcp-3L (hcp-3-like) paralogs are only found in 1-2 species, are expressed in both males and females/hermaphrodites, and encode histone fold domains with 69-100% identity to ancestral hcp-3. We identified novel N-terminal protein motifs, including putative kinetochore protein-interacting motifs and a potential separase cleavage site, which are well conserved across Caenorhabditis HCP-3 proteins. Other N-terminal motifs vary in their retention across paralogs or species, revealing potential subfunctionalization or functional loss following duplication. An N-terminal extension in the hcp-3L gene of C. afra revealed an unprecedented protein fusion, where hcp-3L fused to duplicated segments from hcp-4 (nematode CENP-C). By extending our analyses beyond CenH3, we found gene duplications of six inner and outer kinetochore genes in Caenorhabditis, which appear to have been retained independent of hcp-3 duplications. Our findings suggest that centromeric protein duplications occur frequently in Caenorhabditis nematodes, are selectively retained for short evolutionary periods, then degenerate or are lost entirely. We hypothesize that unique challenges associated with holocentricity in Caenorhabditis may lead to this rapid "revolving door" of kinetochore protein paralogs.


Assuntos
Caenorhabditis elegans , Caenorhabditis , Animais , Caenorhabditis/genética , Caenorhabditis/metabolismo , Caenorhabditis elegans/genética , Centrômero/genética , Centrômero/metabolismo , Histonas/metabolismo , Masculino , Separase/genética , Separase/metabolismo
6.
J Cell Sci ; 134(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34734636

RESUMO

Centromeres are chromosomal regions that serve as sites for kinetochore formation and microtubule attachment, processes that are essential for chromosome segregation during mitosis. Centromeres are almost universally defined by the histone variant CENP-A. In the holocentric nematode C. elegans, CENP-A deposition depends on the loading factor KNL-2. Depletion of either CENP-A or KNL-2 results in defects in centromere maintenance, chromosome condensation and kinetochore formation, leading to chromosome segregation failure. Here, we show that KNL-2 is phosphorylated by CDK-1 in vitro, and that mutation of three C-terminal phosphorylation sites causes chromosome segregation defects and an increase in embryonic lethality. In strains expressing phosphodeficient KNL-2, CENP-A and kinetochore proteins are properly localised, indicating that the role of KNL-2 in centromere maintenance is not affected. Instead, the mutant embryos exhibit reduced mitotic levels of condensin II on chromosomes and significant chromosome condensation impairment. Our findings separate the functions of KNL-2 in CENP-A loading and chromosome condensation, and demonstrate that KNL-2 phosphorylation regulates the cooperation between centromeric regions and the condensation machinery in C. elegans. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Humanos , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Fosforilação
7.
Genome Res ; 30(12): 1740-1751, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33172964

RESUMO

Histone H3.3 is a replication-independent variant of histone H3 with important roles in development, differentiation, and fertility. Here, we show that loss of H3.3 results in replication defects in Caenorhabditis elegans embryos at elevated temperatures. To characterize these defects, we adapt methods to determine replication timing, map replication origins, and examine replication fork progression. Our analysis of the spatiotemporal regulation of DNA replication shows that despite the very rapid embryonic cell cycle, the genome is replicated from early and late firing origins and is partitioned into domains of early and late replication. We find that under temperature stress conditions, additional replication origins become activated. Moreover, loss of H3.3 results in altered replication fork progression around origins, which is particularly evident at stress-activated origins. These replication defects are accompanied by replication checkpoint activation, a delayed cell cycle, and increased lethality in checkpoint-compromised embryos. Our comprehensive analysis of DNA replication in C. elegans reveals the genomic location of replication origins and the dynamics of their firing, and uncovers a role of H3.3 in the regulation of replication origins under stress conditions.


Assuntos
Caenorhabditis elegans/embriologia , Replicação do DNA , Histonas/genética , Mutação com Perda de Função , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Período de Replicação do DNA , Histonas/metabolismo , Origem de Replicação , Estresse Fisiológico
8.
Mol Ecol ; 32(5): 1149-1168, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36530155

RESUMO

The ant Plagiolepis taurica Santschi, 1920 (Hymenoptera, Formicidae) is a typical species of the Eurasian steppes, a large grassland dominated biome that stretches continuously from Central Asia to Eastern Europe and is represented by disjunct outposts also in Central and Western Europe. The extent of this biome has been influenced by the Pleistocene climate, and steppes expanded recurrently during cold stages and contracted in warm stages. Consequently, stenotopic steppe species such as P. taurica repeatedly went through periods of demographic expansion and severe isolation. Here, we explore the impact of these dynamics on the genetic diversification within P. taurica. Delimitation of P. taurica from other Plagiolepis species has been unclear since its initial description, which raised questions on both its classification and its spatiotemporal diversification early on. We re-evaluate species limits and explore underlying mechanisms driving speciation by using an integrative approach based on genomic and morphometric data. We found large intraspecific divergence within P. taurica and resolved geographically coherent western and eastern genetic groups, which likewise differed morphologically. A morphometric survey of type material showed that Plagiolepis from the western group were more similar to P. barbara pyrenaica Emery, 1921 than to P. taurica; we thus lift the former from synonymy and establish it as separate species, P. pyrenaica stat. rev. Explicit evolutionary model testing based on genomic data supported a peripatric speciation for the species pair, probably as a consequence of steppe contraction and isolation during the mid-Pleistocene. We speculate that this scenario could be exemplary for many stenotopic steppe species, given the emphasized dynamics of Eurasian steppes.


Assuntos
Formigas , Animais , Filogenia , Formigas/genética , Evolução Biológica , Ecossistema , Demografia
9.
PLoS Biol ; 18(2): e3000597, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32027643

RESUMO

Natural selection leaves distinct signatures in the genome that can reveal the targets and history of adaptive evolution. By analysing high-coverage genome sequence data from 4 major colour pattern loci sampled from nearly 600 individuals in 53 populations, we show pervasive selection on wing patterns in the Heliconius adaptive radiation. The strongest signatures correspond to loci with the greatest phenotypic effects, consistent with visual selection by predators, and are found in colour patterns with geographically restricted distributions. These recent sweeps are similar between co-mimics and indicate colour pattern turn-over events despite strong stabilising selection. Using simulations, we compare sweep signatures expected under classic hard sweeps with those resulting from adaptive introgression, an important aspect of mimicry evolution in Heliconius butterflies. Simulated recipient populations show a distinct 'volcano' pattern with peaks of increased genetic diversity around the selected target, characteristic of sweeps of introgressed variation and consistent with diversity patterns found in some populations. Our genomic data reveal a surprisingly dynamic history of colour pattern selection and co-evolution in this adaptive radiation.


Assuntos
Evolução Biológica , Mimetismo Biológico/genética , Borboletas/genética , Seleção Genética/genética , Animais , Borboletas/classificação , Frequência do Gene , Introgressão Genética , Loci Gênicos , Variação Genética , Genoma de Inseto/genética , Fenótipo , Filogeografia , Pigmentação/genética , Asas de Animais/metabolismo
10.
J Invertebr Pathol ; 198: 107915, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36958642

RESUMO

Wolbachia are known to cause reproductive manipulations and in some arthropod species, Wolbachia were reported to cause changes in gut microbiome. However, the effects of Wolbachia bacteria on the microbiomes of their hosts, including Drosophila flies, have not been fully accessed. Here, we checked the bacterial microbiome in guts of Wolbachia-uninfected and of Wolbachia-infected Drosophila nigrosparsa, both separated into a bleach-only (embryos bleached) and a gnotobiotic (embryos bleached and inoculated with bacteria) treatment. We observed a clear separation between the Wolbachia-infected and the Wolbachia-uninfected samples, and the infected samples had higher variation in alpha diversity than the uninfected ones. There were reductions in the abundances of Proteobacteria (Pseudomonadota), especially Acetobacter, in the infected samples of both treatments. These findings highlight that Wolbachia change the gut microbiome in D. nigrosparsa as well as that the interactions between Wolbachia and bacteria like Acetobacter need to be investigated.


Assuntos
Microbioma Gastrointestinal , Wolbachia , Animais , Drosophila/microbiologia , Reprodução , Bactérias , Simbiose , Drosophila melanogaster/microbiologia
11.
Nano Lett ; 21(1): 840-846, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33336573

RESUMO

We introduce p-MINFLUX, a new implementation of the highly photon-efficient single-molecule localization method with a simplified experimental setup and additional fluorescence lifetime information. In contrast to the original MINFLUX implementation, p-MINFLUX uses interleaved laser pulses to deliver the doughnut-shaped excitation foci at a maximum repetition rate. Using both static and dynamic DNA origami model systems, we demonstrate the performance of p-MINFLUX for single-molecule localization nanoscopy and tracking, respectively. p-MINFLUX delivers 1-2 nm localization precision with 2000-1000 photon counts. In addition, p-MINFLUX gives access to the fluorescence lifetime enabling multiplexing and super-resolved lifetime imaging. p-MINFLUX should help to unlock the full potential of innovative single-molecule localization schemes.


Assuntos
Nanotecnologia , Fótons , DNA , Lasers , Microscopia de Fluorescência
12.
Nano Lett ; 21(5): 2296-2303, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33621102

RESUMO

Förster resonance energy transfer (FRET) imaging methods provide unique insight into the spatial distribution of energy transfer and (bio)molecular interaction events, though they deliver average information for an ensemble of events included in a diffraction-limited volume. Coupling super-resolution fluorescence microscopy and FRET has been a challenging and elusive task. Here, we present STED-FRET, a method of general applicability to obtain super-resolved energy transfer images. In addition to higher spatial resolution, STED-FRET provides a more accurate quantification of interaction and has the capacity of suppressing contributions of noninteracting partners, which are otherwise masked by averaging in conventional imaging. The method capabilities were first demonstrated on DNA-origami model systems, verified on uniformly double-labeled microtubules, and then utilized to image biomolecular interactions in the membrane-associated periodic skeleton (MPS) of neurons.

13.
Mol Biol Evol ; 37(8): 2211-2227, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32181804

RESUMO

Understanding how organisms adapt to extreme environments is fundamental and can provide insightful case studies for both evolutionary biology and climate-change biology. Here, we take advantage of the vast diversity of lifestyles in ants to identify genomic signatures of adaptation to extreme habitats such as high altitude. We hypothesized two parallel patterns would occur in a genome adapting to an extreme habitat: 1) strong positive selection on genes related to adaptation and 2) a relaxation of previous purifying selection. We tested this hypothesis by sequencing the high-elevation specialist Tetramorium alpestre and four other phylogenetically related species. In support of our hypothesis, we recorded a strong shift of selective forces in T. alpestre, in particular a stronger magnitude of diversifying and relaxed selection when compared with all other ants. We further disentangled candidate molecular adaptations in both gene expression and protein-coding sequence that were identified by our genome-wide analyses. In particular, we demonstrate that T. alpestre has 1) a higher level of expression for stv and other heat-shock proteins in chill-shock tests and 2) enzymatic enhancement of Hex-T1, a rate-limiting regulatory enzyme that controls the entry of glucose into the glycolytic pathway. Together, our analyses highlight the adaptive molecular changes that support colonization of high-altitude environments.


Assuntos
Aclimatação/genética , Formigas/genética , Evolução Biológica , Genoma de Inseto , Seleção Genética , Animais , Clima Frio , Proteínas de Choque Térmico/genética
14.
Mol Ecol ; 30(11): 2511-2527, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811410

RESUMO

Invasive species are a global threat to biodiversity, and understanding their history and biology is a major goal of invasion biology. Population-genetic approaches allow insights into these features, as population structure is shaped by factors such as invasion history (number, origin and age of introductions) and life-history traits (e.g., mating system, dispersal capability). We compared the relative importance of these factors by investigating two closely related ants, Tetramorium immigrans and Tetramorium tsushimae, that differ in their social structure and invasion history in North America. We used mitochondrial DNA sequences and microsatellite alleles to estimate the source and number of introduction events of the two species, and compared genetic structure among native and introduced populations. Genetic diversity of both species was strongly reduced in introduced populations, which also differed genetically from native populations. Genetic differentiation between ranges and the reduction in microsatellite diversity were more severe in the more recently introduced and supercolonial T. tsushimae. However, the loss of mitochondrial haplotype diversity was more pronounced in T. immigrans, which has single-queen colonies and was introduced earlier. Tetramorium immigrans was introduced at least twice from Western Europe to North America and once independently to South America. Its monogyny might have limited genetic diversity per introduction, but new mutations and successive introductions over a long time may have added to the gene pool in the introduced range. Polygyny in T. tsushimae probably facilitated the simultaneous introduction of several queens from a Japanese population to St. Louis, USA. In addition to identifying introduction pathways, our results reveal how social structure can influence the population-genetic consequences of founder events.


Assuntos
Variação Genética , Genética Populacional , Europa (Continente) , Espécies Introduzidas , Repetições de Microssatélites , América do Norte , América do Sul
15.
Mol Phylogenet Evol ; 149: 106822, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32294546

RESUMO

The evolution of flight triggered the rise of pterygote insects, but secondary flightlessness has evolved numerous times and is often associated with reduced gene flow among populations and patterns of diversification. With 85 species most of which are wing reduced, the ground beetle genus Trechus in the European Alps may be one such example. Here, we reconstructed a molecular phylogeny using 72 of these species based on mitochondrial and nuclear DNA sequences as a basis for reconstructing their evolutionary history. We rearranged the species into 20 monophyletic species groups, of which five are novel and 15 were already established but with different species allocated. Wing measurements revealed a strong tendency for wing reduction but also variation within and among species, with the few fully-winged species distributed across multiple species groups containing also wing-reduced species. Using character mapping and phylogenetic independent contrasts, we found that neither distribution area, body size, pigmentation, elevational zone, nor hygrophily explained wing status in our sample. Assessing five completely sampled clades, we inferred that each of their ancestors had most likely already been wing reduced. We discuss putative scenarios explaining this pattern and the presence of wing polymorphism across the phylogeny. One plausible scenario would be an already wing-reduced last common ancestor of all Trechus species and multiple regains of full wing length via back mutation and/or hybridisation. Alternatively and possibly more likely, the ancestors were either fully winged, with subsequent rapid and repeated wing reduction explaining the current wing-status pattern, or polymorphic, with long-term polymorphism or reselection acting on standing genetic variation explaining the recent fully-winged species. Either way, Trechus ground beetles are a promising, taxonomically and ecologically diverse system for studying the evolution of flightlessness. Areas for future research include morphological assessment of flight muscles, functional analysis of flight capability, and exploration of the mechanistic and genetic bases of wing and flight evolution.


Assuntos
Evolução Biológica , Besouros/anatomia & histologia , Besouros/classificação , Asas de Animais/anatomia & histologia , Animais , Europa (Continente) , Geografia , Filogenia , Pigmentação , Análise de Sequência de DNA , Especificidade da Espécie
16.
Nano Lett ; 19(2): 1275-1281, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30681342

RESUMO

An ideal point light source is as small and as bright as possible. For fluorescent point light sources, homogeneity of the light sources is important as well as that the fluorescent units inside the light source maintain their photophysical properties, which is compromised by dye aggregation. Here we propose DNA origami as a rigid scaffold to arrange dye molecules in a dense pixel array with high control of stoichiometry and dye-dye interactions. In order to find the highest labeling density in a DNA origami structure without influencing dye photophysics, we alter the distance of two ATTO647N dyes in single base pair steps and probe the dye-dye interactions on the single-molecule level. For small distances strong quenching in terms of intensity and fluorescence lifetime is observed. With increasing distance, we observe reduced quenching and molecular dynamics. However, energy transfer processes in the weak coupling regime still have a significant impact and can lead to quenching by singlet-dark-state-annihilation. Our study fills a gap of studying the interactions of dyes relevant for superresolution microscopy with dense labeling and for single-molecule biophysics. Incorporating these findings in a 3D DNA origami object will pave the way to bright and homogeneous DNA origami nanobeads.


Assuntos
DNA/química , Corantes Fluorescentes/química , Nanoestruturas/química , Pareamento de Bases , Dimerização , Fluorescência , Microscopia Confocal , Microscopia de Fluorescência , Nanotecnologia , Espectrometria de Fluorescência
17.
Chromosoma ; 126(4): 443-455, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27858158

RESUMO

The centromere is essential for the segregation of chromosomes, as it serves as attachment site for microtubules to mediate chromosome segregation during mitosis and meiosis. In most organisms, the centromere is restricted to one chromosomal region that appears as primary constriction on the condensed chromosome and is partitioned into two chromatin domains: The centromere core is characterized by the centromere-specific histone H3 variant CENP-A (also called cenH3) and is required for specifying the centromere and for building the kinetochore complex during mitosis. This core region is generally flanked by pericentric heterochromatin, characterized by nucleosomes containing H3 methylated on lysine 9 (H3K9me) that are bound by heterochromatin proteins. During mitosis, these two domains together form a three-dimensional structure that exposes CENP-A-containing chromatin to the surface for interaction with the kinetochore and microtubules. At the same time, this structure supports the tension generated during the segregation of sister chromatids to opposite poles. In this review, we discuss recent insight into the characteristics of the centromere, from the specialized chromatin structures at the centromere core and the pericentromere to the three-dimensional organization of these regions that make up the functional centromere.


Assuntos
Centrômero/química , Cromatina/química , Nucleossomos/química , Animais , Centrômero/fisiologia , Cromatina/fisiologia , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Heterocromatina/química , Heterocromatina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Nucleossomos/fisiologia
18.
Small ; 14(51): e1804312, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30444577

RESUMO

Measuring the nanoscale organization of conjugated polymer chains used in organic photovoltaic (OPV) blends is vital if one wants to understand the materials. This is made very difficult with high efficiency OPV polymers such as PTB7 that form aggregates, as a lack of periodicity and a high degree of disorder make understanding of the nanoscale organization challenging. Here, single molecule spectroscopy is used to observe single chains and aggregates of PTB7. Using four detectors the photoluminescence intensity, wavelength, polarization, and lifetime are simultaneously monitored. Fast (milliseconds) and slow (seconds) fluctuations are observed over a time window of 30 s in all of these observables from single aggregates and chains as individual chromophores activate and deactivate, leading to dynamical changes in the emission spectrum and dipole orientation. This information can be used to help reconstruct the spatial and spectral organization of disordered aggregates of PTB7, thereby adding valuable new information on how the chains are arranged in space.

19.
Mol Phylogenet Evol ; 127: 387-404, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29709692

RESUMO

Seed harvesting ants are ecosystem engineers that shape vegetation, nutrient cycles, and microclimate. Progress in ecological research is, however, slowed down by poor species delimitation. For example, it has not been resolved to date, how many species the European harvester ant Messor "structor" (Latreille, 1798) represents. Since its first description, splitting into additional taxa was often proposed but not accepted later on due to inconsistent support from morphology and ecology. Here, we took an iterative integrative-taxonomy approach - comparing multiple, independent data sets of the same sample - and used traditional morphometrics, Wolbachia symbionts, mitochondrial DNA, amplified fragment length polymorphism, and ecological niche modelling. Using the complementarity of the data sets applied, we resolved multiple, strong disagreements over the number of species, ranging from four to ten, and the allocation of individuals to species. We consider most plausible a five-species hypothesis and conclude the taxonomic odyssey by redescribing Messor structor, M. ibericus Santschi, 1925, and M. muticus (Nylander, 1849) stat.rev., and by describing two new species, M. ponticus sp.n. and M. mcarthuri sp.n. The evolutionary explanations invoked in resolving the various data conflicts include pronounced morphological crypsis, incomplete lineage-sorting or ongoing cospeciation of endosymbionts, and peripatric speciation - these ants' significance to evolutionary biology parallels that to ecology. The successful solution of this particular problem illustrates the usefulness of the integrative approach to other systematic problems of comparable complexity and the importance of understanding evolution to drawing correct conclusions on species' attributes, including their ecology and biogeography.


Assuntos
Formigas/classificação , Evolução Biológica , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Formigas/anatomia & histologia , Formigas/genética , Formigas/microbiologia , DNA Mitocondrial/genética , Análise Discriminante , Ecossistema , Feminino , Masculino , Modelos Teóricos , Filogenia , Análise de Componente Principal , Especificidade da Espécie , Terminologia como Assunto , Wolbachia/fisiologia
20.
Ethol Ecol Evol ; 30(3): 220-234, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682632

RESUMO

Social structure influences animal societies on various levels (e.g., relatedness, behaviour). In ants, both the number of matings per queen and the number of queens per colony can vary strongly. While workers from both monogynous and polygynous colonies often fight fiercely, in supercolonies (an extreme form of polygyny comprising thousands of queens in spatially separated but interconnected nests), non-nestmates interact peacefully. Studies on social and behavioural polymorphism within ant species can help elucidate their influence on genetic diversity and behaviour and the factors triggering variation in social structure and behaviour. Here, we reveal a behavioural and social polymorphism comprising monogyny with and without internest aggression in Tetramorium alpestre sampled in Tyrol, Austria. The social polymorphism is based on genetic and behavioural evidence and contrasts with the supercolonial organisation known from another location in Austria (Carinthia), 150 km away. Microsatellite genotyping using eight polymorphic loci revealed monogyny-monandry and high intranest pairwise relatedness. Interestingly, various experimental one-on-one worker encounters revealed only occasional aggressive behaviour between monogynous colonies, and thus a behavioural polymorphism. Mantel tests revealed a significant negative correlation between spatial distance and relatedness, while worker behaviour was not correlated with relatedness or spatial distance. These results indicate that behaviour might be influenced by other factors - for example, the experience of workers, ecological, chemical, and/or genetic factors not characterised in this study. However, workers distinguished nestmates from non-nestmates also when aggression was lacking. We hypothesise an adaptive value of reduced aggression. We speculate that the non-aggressive and partly aggressive encounters observed represent different options in the social structure of T. alpestre, the non-aggressiveness possibly also promoting supercolony development. The social and behavioural polymorphisms observed offer opportunities to identify the factors triggering these changes and thus further explore the behavioural and social polymorphism of this ant species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA