RESUMO
Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.
Assuntos
Análise Mutacional de DNA , Genoma Humano/genética , Genômica , Mutação/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Reparo do DNA/genética , Feminino , Genes BRCA1 , Genes BRCA2 , Marcadores Genéticos/genética , Instabilidade Genômica/genética , Genótipo , Humanos , Camundongos , Neoplasias Pancreáticas/classificação , Neoplasias Pancreáticas/tratamento farmacológico , Platina/farmacologia , Mutação Puntual/genética , Inibidores de Poli(ADP-Ribose) Polimerases , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The mechanisms by which DNA alleles contribute to disease risk, drug response, and other human phenotypes are highly context-specific, varying across cell types and different conditions. Human induced pluripotent stem cells are uniquely suited to study these context-dependent effects but cell lines from hundreds or thousands of individuals are required. Village cultures, where multiple induced pluripotent stem lines are cultured and differentiated in a single dish, provide an elegant solution for scaling induced pluripotent stem experiments to the necessary sample sizes required for population-scale studies. Here, we show the utility of village models, demonstrating how cells can be assigned to an induced pluripotent stem line using single-cell sequencing and illustrating that the genetic, epigenetic or induced pluripotent stem line-specific effects explain a large percentage of gene expression variation for many genes. We demonstrate that village methods can effectively detect induced pluripotent stem line-specific effects, including sensitive dynamics of cell states.
Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem Celular , Diferenciação Celular/genética , FenótipoRESUMO
BACKGROUND: Despite advances in immunotherapy and targeted therapy, platinum-based chemotherapy remains crucial for many patients with advanced non-small cell lung cancer (NSCLC). Resistance to platinum chemotherapy is common, and predictive biomarkers are needed to tailor treatment to patients likely to respond. In vitro evidence implicates the transforming growth factor-ß (TGF-ß) superfamily ligands activin-A and growth differentiation factor 11 (GDF-11) in innate platinum resistance. We performed a validation study to assess their utility as predictive biomarkers of platinum chemotherapy response in advanced NSCLC. PATIENTS AND METHODS: Our study included 123 adult patients with advanced NSCLC without a driver mutation treated with platinum chemotherapy. 98 patients were from a retrospective cohort and 25 from a prospective cohort. We performed immunohistochemistry staining for Activin-A, GDF-11 and TGF-ß on tumour samples for each patient and analysed IHC expression with objective radiological response and overall survival. RESULTS: The overall median survival was 14.8 months. We performed statistical analysis around a cytoplasmic score of 8/18 for Activin-A and GDF-11 based on previously published work, and 110/30 for TGF-ß based on a calculated cutpoint for significance. No survival difference was detected between these groups for Activin-A (p=0.35), GDF-11 (p=0.57) or TGF-ß (p=0.34). There was no association between rates of progressive disease and high Activin-A expression (p=0.43), high GDF-11 expression (p=1.0) or high TGF-ß expression p=0.89). CONCLUSION: Within the confines of our study, Activin-A, GDF-11 and TGF-ß expression was not a predictor of objective radiological response to chemotherapy or overall survival.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Compostos Organoplatínicos , Ativinas/metabolismo , Ativinas/uso terapêutico , Adulto , Biomarcadores , Proteínas Morfogenéticas Ósseas , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Fatores de Diferenciação de Crescimento/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Compostos Organoplatínicos/uso terapêutico , Platina/uso terapêutico , Estudos Prospectivos , Estudos Retrospectivos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/uso terapêutico , Fatores de Crescimento Transformadores/uso terapêuticoRESUMO
There are currently no treatments for geographic atrophy, the advanced form of age-related macular degeneration. Hence, innovative studies are needed to model this condition and prevent or delay its progression. Induced pluripotent stem cells generated from patients with geographic atrophy and healthy individuals were differentiated to retinal pigment epithelium. Integrating transcriptional profiles of 127,659 retinal pigment epithelium cells generated from 43 individuals with geographic atrophy and 36 controls with genotype data, we identify 445 expression quantitative trait loci in cis that are asssociated with disease status and specific to retinal pigment epithelium subpopulations. Transcriptomics and proteomics approaches identify molecular pathways significantly upregulated in geographic atrophy, including in mitochondrial functions, metabolic pathways and extracellular cellular matrix reorganization. Five significant protein quantitative trait loci that regulate protein expression in the retinal pigment epithelium and in geographic atrophy are identified - two of which share variants with cis- expression quantitative trait loci, including proteins involved in mitochondrial biology and neurodegeneration. Investigation of mitochondrial metabolism confirms mitochondrial dysfunction as a core constitutive difference of the retinal pigment epithelium from patients with geographic atrophy. This study uncovers important differences in retinal pigment epithelium homeostasis associated with geographic atrophy.
Assuntos
Atrofia Geográfica , Degeneração Macular , Humanos , Degeneração Macular/genética , Proteômica , Epitélio Pigmentado da Retina , Transcriptoma/genéticaRESUMO
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest malignancies. It is phenotypically heterogeneous with a highly unstable genome and provides few common therapeutic targets. We found that MCL1, Cofilin1 (CFL1) and SRC mRNA were highly expressed by a wide range of these cancers, suggesting that a strategy of dual MCL-1 and SRC inhibition might be efficacious for many patients. Immunohistochemistry revealed that MCL-1 protein was present at high levels in 94.7% of patients in a cohort of PDACs from Australian Pancreatic Genome Initiative (APGI). High MCL1 and Cofilin1 mRNA expression was also strongly predictive of poor outcome in the TCGA dataset and in the APGI cohort. In culture, MCL-1 antagonism reduced the level of the cytoskeletal remodeling protein Cofilin1 and phosphorylated SRC on the active Y416 residue, suggestive of reduced invasive capacity. The MCL-1 antagonist S63845 synergized with the SRC kinase inhibitor dasatinib to reduce cell viability and invasiveness through 3D-organotypic matrices. In preclinical murine models, this combination reduced primary tumor growth and liver metastasis of pancreatic cancer xenografts. These data suggest that MCL-1 antagonism, while reducing cell viability, may have an additional benefit in increasing the antimetastatic efficacy of dasatinib for the treatment of PDAC.