Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.829
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 149(3): 590-604, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22541430

RESUMO

Mouse embryonic stem (ES) cells grown in serum exhibit greater heterogeneity in morphology and expression of pluripotency factors than ES cells cultured in defined medium with inhibitors of two kinases (Mek and GSK3), a condition known as "2i" postulated to establish a naive ground state. We show that the transcriptome and epigenome profiles of serum- and 2i-grown ES cells are distinct. 2i-treated cells exhibit lower expression of lineage-affiliated genes, reduced prevalence at promoters of the repressive histone modification H3K27me3, and fewer bivalent domains, which are thought to mark genes poised for either up- or downregulation. Nonetheless, serum- and 2i-grown ES cells have similar differentiation potential. Precocious transcription of developmental genes in 2i is restrained by RNA polymerase II promoter-proximal pausing. These findings suggest that transcriptional potentiation and a permissive chromatin context characterize the ground state and that exit from it may not require a metastable intermediate or multilineage priming.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Código das Histonas , Transcrição Gênica , Animais , Diferenciação Celular , Epigênese Genética , Genes myc , Histonas/metabolismo , Metilação , Camundongos , RNA Polimerase II/metabolismo , Transcriptoma
2.
Cell ; 150(4): 855-66, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22901814

RESUMO

Understanding the in vivo dynamics of protein localization and their physical interactions is important for many problems in biology. To enable systematic protein function interrogation in a multicellular context, we built a genome-scale transgenic platform for in vivo expression of fluorescent- and affinity-tagged proteins in Caenorhabditis elegans under endogenous cis regulatory control. The platform combines computer-assisted transgene design, massively parallel DNA engineering, and next-generation sequencing to generate a resource of 14,637 genomic DNA transgenes, which covers 73% of the proteome. The multipurpose tag used allows any protein of interest to be localized in vivo or affinity purified using standard tag-based assays. We illustrate the utility of the resource by systematic chromatin immunopurification and automated 4D imaging, which produced detailed DNA binding and cell/tissue distribution maps for key transcription factor proteins.


Assuntos
Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/análise , Caenorhabditis elegans/genética , Engenharia Genética/métodos , Genoma Helmíntico , Fatores de Transcrição/análise , Animais , Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição/genética
3.
Genes Dev ; 33(9-10): 550-564, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30842216

RESUMO

Epigenetic modifications can maintain or alter the inherent symmetry of the nucleosome. However, the mechanisms that deposit and/or propagate symmetry or asymmetry are not understood. Here we report that yeast Set1C/COMPASS (complex of proteins associated with Set1) is dimeric and, consequently, symmetrically trimethylates histone 3 Lys4 (H3K4me3) on promoter nucleosomes. Mutation of the dimer interface to make Set1C monomeric abolished H3K4me3 on most promoters. The most active promoters, particularly those involved in the oxidative phase of the yeast metabolic cycle, displayed H3K4me2, which is normally excluded from active promoters, and a subset of these also displayed H3K4me3. In wild-type yeast, deletion of the sole H3K4 demethylase, Jhd2, has no effect. However, in monomeric Set1C yeast, Jhd2 deletion increased H3K4me3 levels on the H3K4me2 promoters. Notably, the association of Set1C with the elongating polymerase was not perturbed by monomerization. These results imply that symmetrical H3K4 methylation is an embedded consequence of Set1C dimerism and that Jhd2 demethylates asymmetric H3K4me3. Consequently, rather than methylation and demethylation acting in opposition as logic would suggest, a dimeric methyltransferase and monomeric demethylase cooperate to eliminate asymmetry and focus symmetrical H3K4me3 onto selected nucleosomes. This presents a new paradigm for the establishment of epigenetic detail.


Assuntos
Epigênese Genética/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Desmetilação , Dimerização , Deleção de Genes , Histonas/metabolismo , Metilação , Mutagênese , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/genética
4.
EMBO J ; 41(1): e106459, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34806773

RESUMO

In mammals, histone 3 lysine 4 methylation (H3K4me) is mediated by six different lysine methyltransferases. Among these enzymes, SETD1B (SET domain containing 1b) has been linked to syndromic intellectual disability in human subjects, but its role in the mammalian postnatal brain has not been studied yet. Here, we employ mice deficient for Setd1b in excitatory neurons of the postnatal forebrain, and combine neuron-specific ChIP-seq and RNA-seq approaches to elucidate its role in neuronal gene expression. We observe that Setd1b controls the expression of a set of genes with a broad H3K4me3 peak at their promoters, enriched for neuron-specific genes linked to learning and memory function. Comparative analyses in mice with conditional deletion of Kmt2a and Kmt2b histone methyltransferases show that SETD1B plays a more pronounced and potent role in regulating such genes. Moreover, postnatal loss of Setd1b leads to severe learning impairment, suggesting that SETD1B-dependent regulation of H3K4me levels in postnatal neurons is critical for cognitive function.


Assuntos
Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Aprendizagem/fisiologia , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Núcleo Celular/metabolismo , Epigênese Genética , Hipocampo/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Integrases/metabolismo , Memória/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/metabolismo , Sítio de Iniciação de Transcrição , Transcriptoma/genética
5.
Nature ; 586(7827): 80-86, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32717741

RESUMO

Tandem DNA repeats vary in the size and sequence of each unit (motif). When expanded, these tandem DNA repeats have been associated with more than 40 monogenic disorders1. Their involvement in disorders with complex genetics is largely unknown, as is the extent of their heterogeneity. Here we investigated the genome-wide characteristics of tandem repeats that had motifs with a length of 2-20 base pairs in 17,231 genomes of families containing individuals with autism spectrum disorder (ASD)2,3 and population control individuals4. We found extensive polymorphism in the size and sequence of motifs. Many of the tandem repeat loci that we detected correlated with cytogenetic fragile sites. At 2,588 loci, gene-associated expansions of tandem repeats that were rare among population control individuals were significantly more prevalent among individuals with ASD than their siblings without ASD, particularly in exons and near splice junctions, and in genes related to the development of the nervous system and cardiovascular system or muscle. Rare tandem repeat expansions had a prevalence of 23.3% in children with ASD compared with 20.7% in children without ASD, which suggests that tandem repeat expansions make a collective contribution to the risk of ASD of 2.6%. These rare tandem repeat expansions included previously undescribed ASD-linked expansions in DMPK and FXN, which are associated with neuromuscular conditions, and in previously unknown loci such as FGF14 and CACNB1. Rare tandem repeat expansions were associated with lower IQ and adaptive ability. Our results show that tandem DNA repeat expansions contribute strongly to the genetic aetiology and phenotypic complexity of ASD.


Assuntos
Transtorno do Espectro Autista/genética , Expansão das Repetições de DNA/genética , Genoma Humano/genética , Genômica , Sequências de Repetição em Tandem/genética , Feminino , Fatores de Crescimento de Fibroblastos/genética , Predisposição Genética para Doença , Humanos , Inteligência/genética , Proteínas de Ligação ao Ferro/genética , Masculino , Miotonina Proteína Quinase/genética , Motivos de Nucleotídeos , Polimorfismo Genético , Frataxina
6.
Proc Natl Acad Sci U S A ; 120(18): e2219900120, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094152

RESUMO

Nonequilibrium phase transitions are routinely observed in both natural and synthetic systems. The ubiquity of these transitions highlights the conspicuous absence of a general theory of phase coexistence that is broadly applicable to both nonequilibrium and equilibrium systems. Here, we present a general mechanical theory for phase separation rooted in ideas explored nearly a half-century ago in the study of inhomogeneous fluids. The core idea is that the mechanical forces within the interface separating two coexisting phases uniquely determine coexistence criteria, regardless of whether a system is in equilibrium or not. We demonstrate the power and utility of this theory by applying it to active Brownian particles, predicting a quantitative phase diagram for motility-induced phase separation in both two and three dimensions. This formulation additionally allows for the prediction of novel interfacial phenomena, such as an increasing interface width while moving deeper into the two-phase region, a uniquely nonequilibrium effect confirmed by computer simulations. The self-consistent determination of bulk phase behavior and interfacial phenomena offered by this mechanical perspective provide a concrete path forward toward a general theory for nonequilibrium phase transitions.

7.
EMBO J ; 40(8): e105776, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33687089

RESUMO

In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular cascades and gene networks involved in the exit from naïve pluripotency remains fragmentary. Here, we employed a combination of genetic screens in haploid ESCs, CRISPR/Cas9 gene disruption, large-scale transcriptomics and computational systems biology to delineate the regulatory circuits governing naïve state exit. Transcriptome profiles for 73 ESC lines deficient for regulators of the exit from naïve pluripotency predominantly manifest delays on the trajectory from naïve to formative epiblast. We find that gene networks operative in ESCs are also active during transition from pre- to post-implantation epiblast in utero. We identified 496 naïve state-associated genes tightly connected to the in vivo epiblast state transition and largely conserved in primate embryos. Integrated analysis of mutant transcriptomes revealed funnelling of multiple gene activities into discrete regulatory modules. Finally, we delineate how intersections with signalling pathways direct this pivotal mammalian cell state transition.


Assuntos
Diferenciação Celular , Redes Reguladoras de Genes , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Transcriptoma
8.
Brain ; 147(4): 1247-1263, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37935051

RESUMO

Missense variants in SCN3A encoding the voltage-gated sodium (Na+) channel α subunit Nav1.3 are associated with SCN3A-related neurodevelopmental disorder (SCN3A-NDD), a spectrum of disease that includes epilepsy and malformation of cortical development. How genetic variation in SCN3A leads to pathology remains unclear, as prior electrophysiological work on disease-associated variants has been performed exclusively in heterologous cell systems. To further investigate the mechanisms of SCN3A-NDD pathogenesis, we used CRISPR/Cas9 gene editing to modify a control human induced pluripotent stem cell (iPSC) line to express the recurrent de novo missense variant SCN3A c.2624T>C (p.Ile875Thr). With the established Ngn2 rapid induction protocol, we generated glutamatergic forebrain-like neurons (iNeurons), which we showed to express SCN3A mRNA and Nav1.3-mediated Na+ currents. We performed detailed whole-cell patch clamp recordings to determine the effect of the SCN3A-p.Ile875Thr variant on endogenous Na+ currents in, and intrinsic excitability of, human neurons. Compared to control iNeurons, variant-expressing iNeurons exhibit markedly increased slowly-inactivating/persistent Na+ current, abnormal firing patterns with paroxysmal bursting and plateau-like potentials with action potential failure, and a hyperpolarized voltage threshold for action potential generation. We then validated these findings using a separate iPSC line generated from a patient harbouring the SCN3A-p.Ile875Thr variant compared to a corresponding CRISPR-corrected isogenic control line. Finally, we found that application of the Nav1.3-selective blocker ICA-121431 normalizes action potential threshold and aberrant firing patterns in SCN3A-p.Ile1875Thr iNeurons; in contrast, consistent with action as a Na+ channel blocker, ICA-121431 decreases excitability of control iNeurons. Our findings demonstrate that iNeurons can model the effects of genetic variation in SCN3A yet reveal a complex relationship between gain-of-function at the level of the ion channel versus impact on neuronal excitability. Given the transient expression of SCN3A in the developing human nervous system, selective blockade or suppression of Nav1.3-containing Na+ channels could represent a therapeutic approach towards SCN3A-NDD.


Assuntos
Acetamidas , Encefalopatias , Células-Tronco Pluripotentes Induzidas , Tiazóis , Humanos , Potenciais de Ação , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Neurônios/fisiologia , Sódio , Canais de Sódio/genética
9.
Genes Dev ; 31(9): 889-903, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28546511

RESUMO

A subset of long noncoding RNAs (lncRNAs) is spatially correlated with transcription factors (TFs) across the genome, but how these lncRNA-TF gene duplexes regulate tissue development and homeostasis is unclear. We identified a feedback loop within the NANCI (Nkx2.1-associated noncoding intergenic RNA)-Nkx2.1 gene duplex that is essential for buffering Nkx2.1 expression, lung epithelial cell identity, and tissue homeostasis. Within this locus, Nkx2.1 directly inhibits NANCI, while NANCI acts in cis to promote Nkx2.1 transcription. Although loss of NANCI alone does not adversely affect lung development, concurrent heterozygous mutations in both NANCI and Nkx2.1 leads to persistent Nkx2.1 deficiency and reprogramming of lung epithelial cells to a posterior endoderm fate. This disruption in the NANCI-Nkx2.1 gene duplex results in a defective perinatal innate immune response, tissue damage, and progressive degeneration of the adult lung. These data point to a mechanism in which lncRNAs act as rheostats within lncRNA-TF gene duplex loci that buffer TF expression, thereby maintaining tissue-specific cellular identity during development and postnatal homeostasis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Homeostase , Pulmão/crescimento & desenvolvimento , Pulmão/fisiologia , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética , Animais , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Humanos , Imunidade Celular , Pulmão/imunologia , Camundongos , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/metabolismo
10.
J Hepatol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38815932

RESUMO

BACKGROUND & AIMS: New antiviral approaches are urgently required that target multiple aspects of the hepatitis B virus (HBV) replication cycle to improve rates of functional cure. HBV RNA represents a novel therapeutic target. Here, we programmed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas13b endonuclease, to specifically target the HBV pregenomic RNA (pgRNA) and viral mRNAs in a novel approach to reduce HBV replication and protein expression. METHODS: Cas13b CRISPR RNAs (crRNAs) were designed to target multiple regions of HBV pgRNA. Mammalian cells with replication competent wildtype HBV DNA of different genotypes, a HBV stable cell line, a HBV infection model and a hepatitis B surface antigen (HBsAg)-expressing stable cell line were transfected with PspCas13b-blue fluorescent protein (BFP) and crRNAs plasmids and the impact on HBV replication and protein expression was measured. WT HBV DNA, PspCas13b-BFP and crRNA plasmids were simultaneously hydrodynamically injected into mice, and sera HBsAg was measured. PspCas13b mRNA and crRNA were also delivered by lipid nanoparticles (LNP) in a HBsAg-expressing stable cell line and the impact on secreted HBsAg determined. RESULTS: Our HBV targeting crRNAs strongly suppressed HBV replication and protein expression in mammalian cells by up to 96% (p<0.0001). HBV protein expression was also reduced in an HBV stable cell line and in the HBV infection model. CRISPR-Cas13b crRNAs reduced HBsAg expression by 50% (p<0.0001) in vivo. LNP-encapsulated PspCas13b mRNA reduced secreted HBsAg by 87% (p=0.0168) in a HBsAg-expressing stable cell line. CONCLUSIONS: Together, these results show that CRISPR-Cas13b can be programmed to specifically target and degrade HBV RNAs to reduce HBV replication and protein expression, demonstrating its potential as a novel therapeutic option for chronic HBV infection. IMPACT AND IMPLICATIONS: There is an urgent need for new treatments that target multiple aspects of the HBV replication cycle. Here, we present CRISPR-Cas13b as a novel strategy to target HBV replication and protein expression paving the way for its development as a potential new treatment option for patients living with chronic hepatitis B.

11.
J Clin Immunol ; 44(4): 87, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578402

RESUMO

We present a case study of a young male with a history of 22q11.2 deletion syndrome (22qDS), diagnosed with systemic capillary leak syndrome (SCLS) who presented with acute onset of diffuse anasarca and sub-comatose obtundation. We hypothesized that his co-presentation of neurological sequelae might be due to blood-brain barrier (BBB) susceptibility conferred by the 22q11.2 deletion, a phenotype that we have previously identified in 22qDS. Using pre- and post-intravenous immunoglobulins (IVIG) patient serum, we studied circulating biomarkers of inflammation and assessed the potential susceptibility of the 22qDS BBB. We employed in vitro cultures of differentiated BBB-like endothelial cells derived from a 22qDS patient and a healthy control. We found evidence of peripheral inflammation and increased serum lipopolysaccharide (LPS) alongside endothelial cells in circulation. We report that the patient's serum significantly impairs barrier function of the 22qDS BBB compared to control. Only two other cases of pediatric SCLS with neurologic symptoms have been reported, and genetic risk factors have been suggested in both instances. As the third case to be reported, our findings are consistent with the hypothesis that genetic susceptibility of the BBB conferred by genes such as claudin-5 deleted in the 22q11.2 region promoted neurologic involvement during SCLS in this patient.


Assuntos
Síndrome de Vazamento Capilar , Síndrome de DiGeorge , Humanos , Masculino , Criança , Síndrome de Vazamento Capilar/diagnóstico , Barreira Hematoencefálica , Células Endoteliais , Permeabilidade , Inflamação
12.
Eur J Immunol ; 53(1): e2249840, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36337041

RESUMO

Mice modeling the hemizygous deletion of chromosome 22q11.2 (22qMc) have been utilized to address various clinical phenotypes associated with the disease, including cardiac malformations, altered neural circuitry, and behavioral deficits. Yet, the status of the T cell compartment, an important clinical concern among 22q11.2 deletion syndrome (22qDS) patients, has not been addressed. While infancy and early childhood in 22qDS are associated with deficient T cell numbers and thymic hypoplasia, which can be severe in a small subset of patients, studies suggest normalization of the T cell counts by adulthood. We found that adult 22qMc do not exhibit thymic hypoplasia or altered thymic T cell development. Our findings that immune cell counts and inflammatory T cell activation are unaffected in 22qMc lend support to the hypothesis that human 22qDS immunodeficiencies are secondary to thymic hypoplasia, rather than intrinsic effects due to the deletion. Furthermore, the 22q11.2 deletion does not impact the differentiation capacity of T cells, nor their activity and response during inflammatory activation. Thus, 22qMc reflects the T cell compartment in adult 22qDS patients, and our findings suggest that 22qMc may serve as a novel model to address experimental and translational aspects of immunity in 22qDS.


Assuntos
Síndrome de DiGeorge , Síndromes de Imunodeficiência , Humanos , Pré-Escolar , Adulto , Camundongos , Animais , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/complicações , Deleção Cromossômica , Timo , Síndromes de Imunodeficiência/genética , Linfócitos T
13.
Plant Physiol ; 193(4): 2661-2676, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37658850

RESUMO

ACYL CARRIER PROTEIN4 (ACP4) is the most abundant ACP isoform in Arabidopsis (Arabidopsis thaliana) leaves and acts as a scaffold for de novo fatty acid biosynthesis and as a substrate for acyl-ACP-utilizing enzymes. Recently, ACP4 was found to interact with a protein-designated plastid RHOMBOID LIKE10 (RBL10) that affects chloroplast monogalactosyldiacylglycerol (MGDG) biosynthesis, but the cellular function of this interaction remains to be explored. Here, we generated and characterized acp4 rbl10 double mutants to explore whether ACP4 and RBL10 directly interact in influencing chloroplast lipid metabolism. Alterations in the content and molecular species of chloroplast lipids such as MGDG and phosphatidylglycerol were observed in the acp4 and rbl10 mutants, which are likely associated with the changes in the size and profiles of diacylglycerol (DAG), phosphatidic acid (PA), and acyl-ACP precursor pools. ACP4 contributed to the size and profile of the acyl-ACP pool and interacted with acyl-ACP-utilizing enzymes, as expected for its role in fatty acid biosynthesis and chloroplast lipid assembly. RBL10 appeared to be involved in the conversion of PA to DAG precursors for MGDG biosynthesis as evidenced by the increased 34:x PA and decreased 34:x DAG in the rbl10 mutant and the slow turnover of radiolabeled PA in isolated chloroplasts fed with [14C] acetate. Interestingly, the impaired PA turnover in rbl10 was partially reversed in the acp4 rbl10 double mutant. Collectively, this study shows that ACP4 and RBL10 affect chloroplast lipid biosynthesis by modulating substrate precursor pools and appear to act independently.


Assuntos
Proteína de Transporte de Acila , Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Fosfatídicos/metabolismo , Plastídeos/metabolismo , Proteína de Transporte de Acila/metabolismo
14.
Psychol Med ; : 1-11, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775085

RESUMO

BACKGROUND: Cognitive behavioral therapy (CBT) is an effective treatment for patients with social anxiety disorder (SAD) or major depressive disorder (MDD), yet there is variability in clinical improvement. Though prior research suggests pre-treatment engagement of brain regions supporting cognitive reappraisal (e.g. dorsolateral prefrontal cortex [dlPFC]) foretells CBT response in SAD, it remains unknown if this extends to MDD or is specific to CBT. The current study examined associations between pre-treatment neural activity during reappraisal and clinical improvement in patients with SAD or MDD following a trial of CBT or supportive therapy (ST), a common-factors comparator arm. METHODS: Participants were 75 treatment-seeking patients with SAD (n = 34) or MDD (n = 41) randomized to CBT (n = 40) or ST (n = 35). Before randomization, patients completed a cognitive reappraisal task during functional magnetic resonance imaging. Additionally, patients completed clinician-administered symptom measures and a self-report cognitive reappraisal measure before treatment and every 2 weeks throughout treatment. RESULTS: Results indicated that pre-treatment neural activity during reappraisal differentially predicted CBT and ST response. Specifically, greater trajectories of symptom improvement throughout treatment were associated with less ventrolateral prefrontal cortex (vlPFC) activity for CBT patients, but more vlPFC activity for ST patients. Also, less baseline dlPFC activity corresponded with greater trajectories of self-reported reappraisal improvement, regardless of treatment arm. CONCLUSIONS: If replicated, findings suggest individual differences in brain response during reappraisal may be transdiagnostically associated with treatment-dependent improvement in symptom severity, but improvement in subjective reappraisal following psychotherapy, more broadly.

15.
J Clin Psychopharmacol ; 44(4): 386-396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38901008

RESUMO

BACKGROUND: Deutetrabenazine is approved for adults with tardive dyskinesia (TD). Data based on underlying psychiatric condition and baseline dopamine receptor antagonist (DRA) use are limited. METHODS: Patients with TD who completed parent studies ARM-TD or AIM-TD were eligible for the 3-year, open-label extension study (RIM-TD; NCT02198794). In RIM-TD, deutetrabenazine was titrated based on dyskinesia control and tolerability. In this post hoc analysis of RIM-TD, total motor Abnormal Involuntary Movement Scale (AIMS) score and adverse events (AEs) were analyzed by underlying condition and DRA use at parent study baseline. RESULTS: Of 343 patients enrolled in RIM-TD, 336 were included in the analysis by underlying condition, and 337 were included in the analysis by DRA use. One hundred eighty-nine of 205 (92%) patients with psychotic disorders (schizophrenia/schizoaffective disorder) and 65 of 131 (50%) with mood and other disorders (depression/bipolar disorder/other) were receiving a DRA. Mean (SE) deutetrabenazine doses at week 145 were 40.4 (1.13), 38.5 (1.21), 39.9 (1.00), and 38.5 (1.48) mg/d for patients with psychotic disorders, those with mood and other disorders, and those receiving DRAs or not, respectively. Mean (SD) changes in total motor AIMS score from this study baseline to week 145 were -6.3 (4.53), -7.1 (4.92), -6.1 (4.42), and -7.5 (5.19). Exposure-adjusted incidence rates (number of AEs/patient-years) of AEs were similar across groups: any (1.02, 1.71, 1.08, 1.97), serious (0.10, 0.12, 0.10, 0.12), and leading to discontinuation (0.07, 0.05, 0.06, 0.05). CONCLUSIONS: Long-term deutetrabenazine provided clinically meaningful improvements in TD-related movements, with a favorable benefit-risk profile, regardless of underlying condition or DRA use.


Assuntos
Antagonistas de Dopamina , Discinesia Tardia , Tetrabenazina , Humanos , Discinesia Tardia/tratamento farmacológico , Discinesia Tardia/induzido quimicamente , Masculino , Feminino , Tetrabenazina/análogos & derivados , Tetrabenazina/farmacologia , Tetrabenazina/efeitos adversos , Tetrabenazina/administração & dosagem , Pessoa de Meia-Idade , Adulto , Antagonistas de Dopamina/efeitos adversos , Antagonistas de Dopamina/administração & dosagem , Antagonistas de Dopamina/farmacologia , Transtornos Psicóticos/tratamento farmacológico , Idoso , Antipsicóticos/efeitos adversos , Antipsicóticos/administração & dosagem , Esquizofrenia/tratamento farmacológico , Resultado do Tratamento
16.
Mol Psychiatry ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036604

RESUMO

Up to 70% of patients with major depressive disorder present with psychomotor disturbance (PmD), but at the present time understanding of its pathophysiology is limited. In this study, we capitalized on a large sample of patients to examine the neural correlates of PmD in depression. This study included 820 healthy participants and 699 patients with remitted (n = 402) or current (n = 297) depression. Patients were further categorized as having psychomotor retardation, agitation, or no PmD. We compared resting-state functional connectivity (ROI-to-ROI) between nodes of the cerebral motor network between the groups, including primary motor cortex, supplementary motor area, sensory cortex, superior parietal lobe, caudate, putamen, pallidum, thalamus, and cerebellum. Additionally, we examined network topology of the motor network using graph theory. Among the currently depressed 55% had PmD (15% agitation, 29% retardation, and 11% concurrent agitation and retardation), while 16% of the remitted patients had PmD (8% retardation and 8% agitation). When compared with controls, currently depressed patients with PmD showed higher thalamo-cortical and pallido-cortical connectivity, but no network topology alterations. Currently depressed patients with retardation only had higher thalamo-cortical connectivity, while those with agitation had predominant higher pallido-cortical connectivity. Currently depressed patients without PmD showed higher thalamo-cortical, pallido-cortical, and cortico-cortical connectivity, as well as altered network topology compared to healthy controls. Remitted patients with PmD showed no differences in single connections but altered network topology, while remitted patients without PmD did not differ from healthy controls in any measure. We found evidence for compensatory increased cortico-cortical resting-state functional connectivity that may prevent psychomotor disturbance in current depression, but may perturb network topology. Agitation and retardation show specific connectivity signatures. Motor network topology is slightly altered in remitted patients arguing for persistent changes in depression. These alterations in functional connectivity may be addressed with non-invasive brain stimulation.

17.
J Child Psychol Psychiatry ; 65(7): 932-941, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38098445

RESUMO

BACKGROUND: Cross sectional studies have identified linguistic correlates of major depressive disorder (MDD) in smartphone communication. However, it is unclear whether monitoring these linguistic characteristics can detect when an individual is experiencing MDD, which would facilitate timely intervention. METHODS: Approximately 1.2 million messages typed into smartphone social communication apps (e.g. texting, social media) were passively collected from 90 adolescents with a range of depression severity over a 12-month period. Sentiment (i.e. positive vs. negative valence of text), proportions of first-person singular pronouns (e.g. 'I'), and proportions of absolutist words (e.g. 'all') were computed for each message and converted to weekly aggregates temporally aligned with weekly MDD statuses obtained from retrospective interviews. Idiographic, multilevel logistic regression models tested whether within-person deviations in these linguistic features were associated with the probability of concurrently meeting threshold for MDD. RESULTS: Using more first-person singular pronouns in smartphone communication relative to one's own average was associated with higher odds of meeting threshold for MDD in the concurrent week (OR = 1.29; p = .007). Sentiment (OR = 1.07; p = .54) and use of absolutist words (OR = 0.99; p = .90) were not related to weekly MDD. CONCLUSIONS: Passively monitoring use of first-person singular pronouns in adolescents' smartphone communication may help detect MDD, providing novel opportunities for early intervention.


Assuntos
Transtorno Depressivo Maior , Smartphone , Humanos , Adolescente , Transtorno Depressivo Maior/diagnóstico , Feminino , Masculino , Linguística , Aplicativos Móveis
18.
Psychophysiology ; 61(4): e14476, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37905333

RESUMO

The ability to accurately identify and interpret others' emotions is critical for social and emotional functioning during adolescence. Indeed, previous research has identified that laboratory-based indices of facial emotion recognition and engagement with emotional faces predict adolescent mood states. Whether socioemotional information processing relates to real-world affective dynamics using an ecologically sensitive approach, however, has rarely been assessed. In the present study, adolescents (N = 62; ages 13-18) completed a Facial Recognition Task, including happy, angry, and sad stimuli, while EEG data were acquired. Participants also provided ecological momentary assessment (EMA) data probing their current level of happiness, anger, and sadness for 1-week, resulting in indices of emotion (mean-level, inertia, instability). Analyses focused on relations between (1) accuracy for and (2) prolonged engagement with (LPP) emotional faces and EMA-reported emotions. Greater prolonged engagement with happy faces was related to less resistance to changes in happiness (i.e., less happiness inertia), whereas greater prolonged engagement with angry faces associated with more resistance to changes in anger (i.e., greater anger inertia). Results suggest that socioemotional processes captured by laboratory measures have real-world implications for adolescent affective states and highlight potentially actionable targets for novel treatment approaches (e.g., just-in-time interventions). Future studies should continue to assess relations among socioemotional informational processes and dynamic fluctuations in adolescent affective states.


Assuntos
Emoções , Reconhecimento Facial , Adolescente , Humanos , Emoções/fisiologia , Ira/fisiologia , Felicidade , Tristeza , Reconhecimento Facial/fisiologia , Expressão Facial
19.
Int J Eat Disord ; 57(5): 1234-1244, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436447

RESUMO

OBJECTIVE: Anorexia nervosa (AN) is a serious psychiatric illness associated with significant medical and psychiatric comorbidity and impairment. Theoretical models of AN and self-report studies suggest that negative self-evaluation (i.e., low self-esteem) is related to the development and maintenance of AN. The goal of this study was to extend findings from self-report methodology using a neurocognitive task that probes self-evaluation implicitly and explicitly. METHOD: We compared female adolescent and adult patients with AN (n = 35) and healthy controls (HC, n = 38) on explicit (i.e., endorsement of words as self-relevant), implicit (recall, recognition, reaction time), and composite (i.e., valence index, bias score, drift rates) indices of self-evaluation. We applied a drift-diffusion model to compute the drift rates, reflecting participants' decision-making process as to whether words were self-relevant. The association between self-evaluation indices and eating disorder severity was examined. RESULTS: There were significant Group × Condition interaction effects for all explicit and implicit measures (all p's ≤ .01), where the AN group endorsed, recalled, and recognized more negative relative to positive words than HC. The AN group had more negative valence index and bias scores, and slower drift rate away from negative words, reflecting more negative self-evaluation. The finding for recall was attenuated when individuals with depression were excluded. Measures of self-evaluation bias were not related to eating disorder severity. DISCUSSION: Using a neurocognitive approach that includes explicit and implicit indices of bias, results suggest that patients with AN have more negative self-evaluation. Due to the cross-sectional design, additional studies are needed to further evaluate directionality. PUBLIC SIGNIFICANCE: Negative self-evaluation/low self-esteem is thought to contribute to eating disorder symptoms. Findings of this study using a neurocognitive task to probe self-evaluation suggested that individuals with anorexia nervosa have more negative self-evaluation, reflected by endorsing and remembering more negative (than positive) words compared to healthy controls, and doing so faster. Targeting the construct of negative self-evaluation in treatment of AN may be warranted.


Assuntos
Anorexia Nervosa , Autoimagem , Humanos , Anorexia Nervosa/psicologia , Feminino , Adolescente , Adulto , Adulto Jovem , Tempo de Reação , Rememoração Mental , Testes Neuropsicológicos , Estudos de Casos e Controles , Autorrelato
20.
Nucleic Acids Res ; 50(3): e15, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34792175

RESUMO

Recombineering assisted multiplex genome editing generally uses single-stranded oligonucleotides for site directed mutational changes. It has proven highly efficient for functional screens and to optimize microbial cell factories. However, this approach is limited to relatively small mutational changes. Here, we addressed the challenges involved in the use of double-stranded DNA substrates for multiplex genome engineering. Recombineering is mediated by phage single-strand annealing proteins annealing ssDNAs into the replication fork. We apply this insight to facilitate the generation of ssDNA from the dsDNA substrate and to alter the speed of replication by elevating the available deoxynucleoside triphosphate (dNTP) levels. Intracellular dNTP concentration was elevated by ribonucleotide reductase overexpression or dNTP addition to establish double-stranded DNA Recombineering-assisted Multiplex Genome Engineering (dReaMGE), which enables rapid and flexible insertional and deletional mutagenesis at multiple sites on kilobase scales in diverse bacteria without the generation of double-strand breaks or disturbance of the mismatch repair system. dReaMGE can achieve combinatorial genome engineering works, for example, alterations to multiple biosynthetic pathways, multiple promoter or gene insertions, variations of transcriptional regulator combinations, within a few days. dReaMGE adds to the repertoire of bacterial genome engineering to facilitate discovery, functional genomics, strain optimization and directed evolution of microbial cell factories.


Assuntos
DNA , Engenharia Genética , Bactérias/genética , DNA de Cadeia Simples/genética , Genoma Bacteriano/genética , Oligonucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA