Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(11): 318, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37804439

RESUMO

Our current knowledge regarding the development of the human brain mostly derives from experimental studies on non-human primates, sheep, and rodents. However, these studies may not completely simulate all the features of human brain development as a result of species differences and variations in pre- and postnatal brain maturation. Therefore, it is important to supplement the in vivo animal models to increase the possibility that preclinical studies have appropriate relevance for potential future human trials. Three-dimensional brain organoid culture technology could complement in vivo animal studies to enhance the translatability of the preclinical animal studies and the understanding of brain-related disorders. In this review, we focus on the development of a model of hypoxic-ischemic (HI) brain injury using human brain organoids to complement the translation from animal experiments to human pathophysiology. We also discuss how the development of these tools provides potential opportunities to study fundamental aspects of the pathophysiology of HI-related brain injury including differences in the responses between males and females.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Masculino , Feminino , Animais , Humanos , Ovinos , Modelos Animais de Doenças , Encéfalo , Roedores , Organoides/fisiologia
2.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047713

RESUMO

Microvasculature develops during early brain development. Hypoxia-ischemia (HI) and hypoxia (H) predispose to brain injury in neonates. Inter-alpha inhibitor proteins (IAIPs) attenuate injury to the neonatal brain after exposure to HI. However, the effects of IAIPs on the brain microvasculature after exposure to HI have not been examined in neonates. Postnatal day-7 rats were exposed to sham treatment or right carotid artery ligation and 8% oxygen for 90 min. HI comprises hypoxia (H) and ischemia to the right hemisphere (HI-right) and hypoxia to the whole body, including the left hemisphere (H-left). Human IAIPs (hIAIPs, 30 mg/kg) or placebo were injected immediately, 24 and 48 h after HI/H. The brains were analyzed 72 h after HI/H to determine the effects of hIAIPs on the microvasculature by laminin immunohistochemistry and calculation of (1) the percentage area stained by laminin, (2) cumulative microvessel length, and (3) density of tunneling nanotubes (TNTs), which are sensitive indicators of the earliest phases of neo-vascularization/collateralization. hIAIPs mainly affected the percent of the laminin-stained area after HI/H, cumulative vessel length after H but not HI, and TNT density in females but not males. hIAIPs modify the effects of HI/H on the microvasculature after brain injury in neonatal rats and exhibit sex-related differential effects. Our findings suggest that treatment with hIAIPs after exposure to H and HI in neonatal rats affects the laminin content of the vessel basal lamina and angiogenic responses in a sex-related fashion.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Feminino , Ratos , Animais , Humanos , Animais Recém-Nascidos , Hipóxia-Isquemia Encefálica/metabolismo , Laminina/metabolismo , Hipóxia/metabolismo , Encéfalo/metabolismo , Isquemia , Microvasos/metabolismo
3.
FASEB J ; 35(3): e21399, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33559227

RESUMO

The high-mobility group box-1 (HMGB1) protein is a transcription-regulating protein located in the nucleus. However, it serves as a damage-associated molecular pattern protein that activates immune cells and stimulates inflammatory cytokines to accentuate neuroinflammation after release from damaged cells. In contrast, Inter-alpha Inhibitor Proteins (IAIPs) are proteins with immunomodulatory effects including inhibition of pro-inflammatory cytokines. We have demonstrated that IAIPs exhibit neuroprotective properties in neonatal rats exposed to hypoxic-ischemic (HI) brain injury. In addition, previous studies have suggested that the light chain of IAIPs, bikunin, may exert its anti-inflammatory effects by inhibiting HMGB1 in a variety of different injury models in adult subjects. The objectives of the current study were to confirm whether HMGB1 is a target of IAIPs by investigating the potential binding characteristics of HMGB1 and IAIPs in vitro, and co-localization in vivo in cerebral cortices after exposure to HI injury. Solid-phase binding assays and surface plasmon resonance (SPR) were used to determine the physical binding characteristics between IAIPs and HMGB1. Cellular localizations of IAIPs-HMGB1 in neonatal rat cortex were visualized by double labeling with anti-IAIPs and anti-HMGB1 antibodies. Solid-phase binding and SPR demonstrated specific binding between IAIPs and HMGB1 in vitro. Cortical cytoplasmic and nuclear co-localization of IAIPs and HMGB1 were detected by immunofluorescent staining in control and rats immediately and 3 hours after HI. In conclusion, HMGB1 and IAIPs exhibit direct binding in vitro and co-localization in vivo in neonatal rats exposed to HI brain injury suggesting HMGB1 could be a target of IAIPs.


Assuntos
alfa-Globulinas/química , Córtex Cerebral/química , Proteína HMGB1/química , Hipóxia-Isquemia Encefálica/metabolismo , alfa-Globulinas/análise , Animais , Animais Recém-Nascidos , Feminino , Imunofluorescência , Proteína HMGB1/análise , Imuno-Histoquímica , Ratos , Ratos Wistar , Ressonância de Plasmônio de Superfície
4.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35456999

RESUMO

Exposure to hypoxic-ischemic (HI) insults in newborns can predispose them to severe neurological sequela. The mechanisms underlying HI-related brain injury have not been completely elucidated. The neurovascular unit (NVU) is a composite of structures that protect the brain from the influx of detrimental molecules. Changes in the NVU after HI are important because they could reveal endogenous neuroprotective pathways in the cerebral microvasculature. Furthermore, the time course of changes in the NVU after exposure to HI in the newborn remains to be determined. In this study, we examined the effects of severe HI on the time course of changes in the NVU in neonatal rats. Brains were collected from rats exposed to right carotid artery ligation and 2 h of hypoxia on postnatal day 7 with recovery for 6 or 48 h after exposure to sham treatment (Sham) or HI. The right HI and left hypoxic alone sides of the brains were examined by quantitative immunohistochemistry for vascular density (laminin), pericyte vascular coverage (PDGFRß), astrocyte vascular coverage (GFAP), and claudin-5 expression in the microvasculature of the cerebral cortex, white matter, and hippocampus. HI-related brain injury in neonatal rats was associated with increases in vascular density in the cortex and hippocampus 48 h after HI as well as neurovascular remodeling, including loss of pericyte coverage in the cortex and increases in claudin-5 in the hippocampus 6 h after HI. Astrocyte coverage was not affected by HI injury. The time course of the responses in the different components of the NVU varied after exposure to HI. There were also differential regional responses in the elements of the NVU in response to HI and hypoxia alone.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Claudina-5/metabolismo , Hipóxia/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Isquemia/metabolismo , Ratos
5.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362257

RESUMO

Hypoxia-ischemia (HI)-related brain injury is an important cause of morbidity and long-standing disability in newborns. We have previously shown that human plasma-derived inter-alpha inhibitor proteins (hIAIPs) attenuate HI-related brain injury in neonatal rats. The optimal dose of hIAIPs for their neuroprotective effects and improvement in behavioral outcomes remains to be determined. We examined the efficacy of 30, 60, or 90 mg/kg of hIAIPs administered to neonatal rats after exposure to HI for 2 h. Postnatal day 7 (P7) Wistar rats were exposed to either sham-surgery or unilateral HI (right carotid artery ligation, 2 h of 8% O2) brain injury. A placebo, 30, 60, or 90 mg/kg of hIAIPs were injected intraperitoneally at 0, 24 and 48 h after HI (n = 9-10/sex). We carried out the following behavioral analyses: P8 (righting reflex), P9 (negative geotaxis) and P10 (open-field task). Rats were humanely killed on P10 and their brains were stained with cresyl violet. Male extension/contraction responses and female righting reflex times were higher in the HI placebo groups than the sham groups. Female open-field exploration was lower in the HI placebo group than the sham group. hIAIPs attenuated these behavioral deficits. However, the magnitude of the responses did not vary by hIAIP dose. hIAIPs reduced male brain infarct volumes in a manner that correlated with improved behavioral outcomes. Increasing the hIAIP dose from 30 to 90 mg/kg did not further accentuate the hIAIP-related decreases in infarct volumes. We conclude that larger doses of hIAIPs did not provide additional benefits over the 30 mg/kg dose for behavior tasks or reductions in infarct volumes in neonatal rats after exposure to severe HI.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Feminino , Humanos , Recém-Nascido , Masculino , Ratos , Animais Recém-Nascidos , Encéfalo/metabolismo , Infarto Encefálico/metabolismo , Lesões Encefálicas/metabolismo , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Ratos Wistar
6.
Int J Mol Sci ; 22(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34639091

RESUMO

Inter-alpha Inhibitor Proteins (IAIPs) are key immunomodulatory molecules. Endogenous IAIPs are present in human, rodent, and sheep brains, and are variably localized to the cytoplasm and nuclei at multiple developmental stages. We have previously reported that ischemia-reperfusion (I/R) reduces IAIP concentrations in the fetal sheep brain. In this study, we examined the effect of I/R on total, cytoplasmic, and nuclear expression of IAIPs in neurons (NeuN+), microglia (Iba1+), oligodendrocytes (Olig2+) and proliferating cells (Ki67+), and their co-localization with histones and the endoplasmic reticulum in fetal brain cells. At 128 days of gestation, fetal sheep were exposed to Sham (n = 6) or I/R induced by cerebral ischemia for 30 min with reperfusion for 7 days (n = 5). Although I/R did not change the total number of IAIP+ cells in the cerebral cortex or white matter, cells with IAIP+ cytoplasm decreased, whereas cells with IAIP+ nuclei increased in the cortex. I/R reduced total neuronal number but did not change the IAIP+ neuronal number. The proportion of cytoplasmic IAIP+ neurons was reduced, but there was no change in the number of nuclear IAIP+ neurons. I/R increased the number of microglia and decreased the total numbers of IAIP+ microglia and nuclear IAIP+ microglia, but not the number of cytoplasmic IAIP+ microglia. I/R was associated with reduced numbers of oligodendrocytes and increased proliferating cells, without changes in the subcellular IAIP localization. IAIPs co-localized with the endoplasmic reticulum and histones. In conclusion, I/R alters the subcellular localization of IAIPs in cortical neurons and microglia but not in oligodendrocytes or proliferating cells. Taken together with the known neuroprotective effects of exogenous IAIPs, we speculate that endogenous IAIPs may play a role during recovery from I/R.


Assuntos
alfa-Globulinas/metabolismo , Feto/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Feto/patologia , Hipóxia-Isquemia Encefálica/patologia , Masculino , Microglia/patologia , Neurônios/patologia , Fármacos Neuroprotetores , Oligodendroglia/patologia , Ovinos , Frações Subcelulares/metabolismo
7.
J Neuroinflammation ; 17(1): 167, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32466771

RESUMO

BACKGROUND: Exposure to inflammation during pregnancy can predispose to brain injury in premature infants. In the present study, we investigated the effects of prolonged exposure to inflammation on the cerebrovasculature of preterm fetal sheep. METHODS: Chronically instrumented fetal sheep at 103-104 days of gestation (full term is ~ 147 days) received continuous low-dose lipopolysaccharide (LPS) infusions (100 ng/kg over 24 h, followed by 250 ng/kg/24 h for 96 h plus boluses of 1 µg LPS at 48, 72, and 96 h) or the same volume of normal saline (0.9%, w/v). Ten days after the start of LPS exposure at 113-114 days of gestation, the sheep were killed, and the fetal brain perfused with formalin in situ. Vessel density, pericyte and astrocyte coverage of the blood vessels, and astrogliosis in the cerebral cortex and white matter were determined using immunohistochemistry. RESULTS: LPS exposure reduced (P < 0.05) microvascular vessel density and pericyte vascular coverage in the cerebral cortex and white matter of preterm fetal sheep, and increased the activation of perivascular astrocytes, but decreased astrocytic vessel coverage in the white matter. CONCLUSIONS: Prolonged exposure to LPS in preterm fetal sheep resulted in decreased vessel density and neurovascular remodeling, suggesting that chronic inflammation adversely affects the neurovascular unit and, therefore, could contribute to long-term impairment of brain development.


Assuntos
Encéfalo/patologia , Inflamação/patologia , Complicações na Gravidez/patologia , Animais , Vasos Sanguíneos/patologia , Feminino , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Gravidez , Complicações na Gravidez/induzido quimicamente , Ovinos
8.
J Neurosci Res ; 98(7): 1468-1484, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32060970

RESUMO

Perinatal hypoxic-ischemic (HI)-related brain injury is an important cause of morbidity and long-standing disability in newborns. The only currently approved therapeutic strategy available to reduce brain injury in the newborn is hypothermia. Therapeutic hypothermia can only be used to treat HI encephalopathy in full-term infants and survivors remain at high risk for a wide spectrum of neurodevelopmental abnormalities as a result of residual brain injury. Therefore, there is an urgent need for adjunctive therapeutic strategies. Inflammation and neurovascular damage are important factors that contribute to the pathophysiology of HI-related brain injury and represent exciting potential targets for therapeutic intervention. In this review, we address the role of each component of the neurovascular unit (NVU) in the pathophysiology of HI-related injury in the neonatal brain. Disruption of the blood-brain barrier (BBB) observed in the early hours after an HI-related event is associated with a response at the basal lamina level, which comprises astrocytes, pericytes, and immune cells, all of which could affect BBB function to further exacerbate parenchymal injury. Future research is required to determine potential drugs that could prevent or attenuate neurovascular damage and/or augment repair. However, some studies have reported beneficial effects of hypothermia, erythropoietin, stem cell therapy, anti-cytokine therapy and metformin in ameliorating several different facets of damage to the NVU after HI-related brain injury in the perinatal period.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Encéfalo/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/terapia , Fármacos Neuroprotetores/uso terapêutico , Animais , Animais Recém-Nascidos , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/fisiopatologia , Recém-Nascido , Fármacos Neuroprotetores/farmacologia
9.
J Neurosci Res ; 98(5): 869-887, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31797408

RESUMO

Inter-alpha inhibitor proteins (IAIPs) are naturally occurring immunomodulatory molecules found in most tissues. We have reported ontogenic changes in the expression of IAIPs in brain during development in sheep and abundant expression of IAIPs in fetal and neonatal rodent brain in a variety of cellular types and brain regions. Although a few studies identified bikunin, light chain of IAIPs, in adult human brain, the presence of the complete endogenous IAIP protein complex has not been reported in human brain. In this study, we examined the immunohistochemical expression of endogenous IAIPs in human cerebral cortex from early in development through the neonatal period and in adults using well-preserved postmortem brains. We examined total, nuclear, and cytoplasmic staining of endogenous IAIPs and their expression in neurofilament light polypeptide-positive neurons and glial fibrillary acidic protein (GFAP)-positive astrocytes. IAIPs were ubiquitously detected for the first time in cerebral cortical cells at 24-26, 27-28, 29-36, and 37-40 weeks of gestation and in adults. Quantitative analyses revealed that IAIPs were predominately localized in the nucleus in all age groups, but cytoplasmic IAIP expression was more abundant in adult than in the younger ages. Immunoreactivity of IAIPs was expressed in neurons and astrocytes in all age groups. In addition, IAIP co-localization with GFAP-positive astrocytes was more abundant in adults than in the developing brain. We conclude that IAIPs exhibit ubiquitous expression, and co-localize with neurons and astrocytes in the developing and adult human brain suggesting a potential role for IAIPs in development and endogenous neuroprotection.


Assuntos
alfa-Globulinas/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Astrócitos/metabolismo , Feminino , Feto/metabolismo , Idade Gestacional , Humanos , Lactente , Masculino , Pessoa de Meia-Idade
10.
Int J Mol Sci ; 21(23)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276548

RESUMO

Perinatal hypoxia-ischemia (HI) is a major cause of brain injury and mortality in neonates. Hypoxic-ischemic encephalopathy (HIE) predisposes infants to long-term cognitive deficits that influence their quality of life and place a large burden on society. The only approved treatment to protect the brain after HI is therapeutic hypothermia, which has limited effectiveness, a narrow therapeutic time window, and is not considered safe for treatment of premature infants. Alternative or adjunctive therapies are needed to improve outcomes of full-term and premature infants after exposure to HI. Inter-alpha inhibitor proteins (IAIPs) are immunomodulatory molecules that are proposed to limit the progression of neonatal inflammatory conditions, such as sepsis. Inflammation exacerbates neonatal HIE and suggests that IAIPs could attenuate HI-related brain injury and improve cognitive outcomes associated with HIE. Recent studies have shown that intraperitoneal treatment with IAIPs can decrease neuronal and non-neuronal cell death, attenuate glial responses and leukocyte invasion, and provide long-term behavioral benefits in neonatal rat models of HI-related brain injury. The present review summarizes these findings and outlines the remaining experimental analyses necessary to determine the clinical applicability of this promising neuroprotective treatment for neonatal HI-related brain injury.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , alfa-Globulinas/química , alfa-Globulinas/genética , alfa-Globulinas/metabolismo , Animais , Lesões Encefálicas/diagnóstico , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Hipóxia-Isquemia Encefálica/diagnóstico , Hipóxia-Isquemia Encefálica/etiologia , Hipóxia-Isquemia Encefálica/metabolismo , Recém-Nascido , Neurônios/metabolismo , Neuroproteção , Relação Estrutura-Atividade
11.
Pediatr Dev Pathol ; 22(4): 344-355, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30683019

RESUMO

BACKGROUND: Perinatal ischemia-reperfusion (I/R) injury of cerebral white matter causes long-term cognitive and motor disabilities in children. I/R damages or kills highly metabolic immature oligodendroglia via oxidative stress, excitotoxicity, inflammation, and mitochondrial dysfunction, impairing their capacity to generate and maintain mature myelin. However, the consequences of I/R on myelin lipid composition have not been characterized. OBJECTIVE: This study utilized matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to assess alterations in cerebral supraventricular white matter myelin lipid profiles in a fetal sheep model of perinatal I/R. METHODS: Fetal sheep (127 days gestation) were studied after 30 minutes of bilateral carotid artery occlusion followed by 4 (n = 5), 24 (n = 7), 48 (n = 3), or 72 (n = 5) hours of reperfusion, or sham treatment (n = 5). White matter lipids were analyzed by negative ion mode MALDI-MS. RESULTS: Striking I/R-associated shifts in phospholipid and sphingolipid expression occurred over the 72-hour time course with most responses detected within 4 hours of reperfusion and progressing at the 48- and 72-hour points. I/R decreased expression of phosphatidic acid and phosphatidylethanol amine and increased phosphatidylinositol, sulfatide, and lactosylceramide. CONCLUSIONS: Cerebral I/R in mid-gestation fetal sheep causes rapid shifts in white matter myelin lipid composition that may reflect injury, proliferation, or recovery of immature oligodendroglia.


Assuntos
Lipídeos/análise , Oligodendroglia/patologia , Traumatismo por Reperfusão/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Feto/metabolismo , Feto/patologia , Humanos , Lipidômica , Masculino , Oligodendroglia/metabolismo , Gravidez , Traumatismo por Reperfusão/metabolismo , Ovinos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Substância Branca/metabolismo , Substância Branca/patologia
12.
Dev Neurosci ; 40(3): 234-245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30048980

RESUMO

Hypoxic-ischemic brain injury is a leading cause of neurodevelopmental morbidities in preterm and full-term infants. Blood-brain barrier dysfunction represents an important component of perinatal hypoxic-ischemic brain injury. The extracellular matrix (ECM) is a vital component of the blood-brain barrier. Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) are important ECM components. They contribute to brain development, blood-brain barrier maintenance, and to regenerative and repair processes after hypoxic-ischemic brain injury. We hypothesized that ischemia at different durations of reperfusion affects the ECM protein composition of MMPs and TIMPs in the cerebral cortex of fetal sheep. Cerebral cortical samples were snap-frozen from sham control fetuses at 127 days of gestation and from fetuses after exposure to 30-min carotid occlusion and 4-, 24-, and 48-h of reperfusion. Protein expression of MMP-2, -8, -9, and -13 and TIMP-1, -2, -3, and -4 was measured by Western immunoblotting along with the gelatinolytic activity of MMP-2 and MMP-9 by zymography. The expression of MMP-8 was increased (Kruskal-Wallis, p = 0.04) in fetuses 48 h after ischemia. In contrast, changes were not observed in the protein expression of MMP-2, -9, or -13. The gelatinolytic activity of pro-MMP-2 was increased (ANOVA, p = 0.02, Tukey HSD, p = 0.05) 24 h after ischemia. TIMP-1 and -3 expression levels were also higher (TIMP-1, ANOVA, p = 0.003, Tukey HSD, p = 0.01; TIMP-3, ANOVA, p = 0.006, Tukey HSD, p = 0.01) 24 h after ischemia compared with both the sham controls and with fetuses exposed to 4 h of reperfusion. The changes in the expression of TIMP-1, -2, and -3 correlated with the changes in the MMP-8 and -13 protein expression. We speculate that regulation of MMP-8, MMP-13, and TIMPs contributes to ECM remodeling after is chemic-reperfusion injury in the fetal brain.


Assuntos
Encéfalo/metabolismo , Inibidores de Metaloproteinases de Matriz/metabolismo , Metaloproteinases da Matriz/metabolismo , Traumatismo por Reperfusão/enzimologia , Animais , Traumatismo por Reperfusão/patologia , Ovinos
13.
J Pediatr ; 197: 286-291.e2, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29555093

RESUMO

A pregnant woman with new-onset type 1 diabetes and ketoacidosis delivered an infant at 28 weeks of gestation who died with multiple organ failure and severe cerebral vasculopathy with extensive hemorrhage, diffuse microgliosis, and edema. This illustrates that antenatal metabolic and inflammatory stressors may be associated with neonatal encephalopathy and cerebral hemorrhage.


Assuntos
Encefalopatias/etiologia , Cetoacidose Diabética/complicações , Doenças do Prematuro/etiologia , Efeitos Tardios da Exposição Pré-Natal/diagnóstico , Adulto , Autopsia , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Mães , Insuficiência de Múltiplos Órgãos/etiologia , Gravidez , Complicações na Gravidez
14.
Brain Behav Immun ; 67: 24-35, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28780000

RESUMO

Perinatal hypoxic-ischemic reperfusion (I/R)-related brain injury is a leading cause of neurologic morbidity and life-long disability in children. Infants exposed to I/R brain injury develop long-term cognitive and behavioral deficits, placing a large burden on parents and society. Therapeutic strategies are currently not available for infants with I/R brain damage, except for hypothermia, which can only be used in full term infants with hypoxic-ischemic encephalopathy (HIE). Moreover, hypothermia is only partially protective. Pro-inflammatory cytokines are key contributors to the pathogenesis of perinatal I/R brain injury. Interleukin-1ß (IL-1ß) is a critical pro-inflammatory cytokine, which has been shown to predict the severity of HIE in infants. We have previously shown that systemic infusions of mouse anti-ovine IL-1ß monoclonal antibody (mAb) into fetal sheep resulted in anti-IL-1ß mAb penetration into brain, reduced I/R-related increases in IL-1ß expression and blood-brain barrier (BBB) dysfunction in fetal brain. The purpose of the current study was to examine the effects of systemic infusions of anti-IL-1ß mAb on short-term I/R-related parenchymal brain injury in the fetus by examining: 1) histopathological changes, 2) apoptosis and caspase-3 activity, 3) neuronal degeneration 4) reactive gliosis and 5) myelin basic protein (MBP) immunohistochemical staining. The study groups included non-ischemic controls, placebo-treated ischemic, and anti-IL-1ß mAb treated ischemic fetal sheep at 127days of gestation. The systemic intravenous infusions of anti-IL-1ß mAb were administered at fifteen minutes and four hours after in utero brain ischemia. The duration of each infusion was two hours. Parenchymal brain injury was evaluated by determining pathological injury scores, ApopTag® positive cells/mm2, caspase-3 activity, Fluoro-Jade B positive cells/mm2, glial fibrillary acidic protein (GFAP) and MBP staining in the brains of fetal sheep 24h after 30min of ischemia. Treatment with anti-IL-1ß mAb reduced (P<0.05) the global pathological injury scores, number of apoptotic positive cells/mm2, and caspase-3 activity after ischemia in fetal sheep. The regional pathological scores and Fluoro-Jade B positive cells/mm2 did not differ between the placebo- and anti-IL-1ß mAb treated ischemic fetal sheep. The percent of the cortical area stained for GFAP was lower (P<0.05) in the placebo ischemic treated than in the non-ischemic group, but did not differ between the placebo- and anti-IL-1ß mAb treated ischemic groups. MBP immunohistochemical expression did not differ among the groups. In conclusion, infusions of anti-IL-1ß mAb attenuate short-term I/R-related histopathological tissue injury, apoptosis, and reduce I/R-related increases in caspase-3 activity in ovine fetal brain. Therefore, systemic infusions of anti-IL-1ß mAb attenuate short-term I/R-related parenchymal brain injury in the fetus.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Isquemia Encefálica/imunologia , Encéfalo/imunologia , Interleucina-1beta/imunologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Apoptose , Encéfalo/patologia , Encéfalo/fisiopatologia , Isquemia Encefálica/patologia , Feto/imunologia , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/patologia , Ovinos
15.
Brain Behav Immun ; 64: 173-179, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28286301

RESUMO

Hypoxic-ischemic (HI) brain injury is recognized as a significant problem in the perinatal period, contributing to life-long language-learning and other cognitive impairments. Central auditory processing deficits are common in infants with hypoxic-ischemic encephalopathy and have been shown to predict language learning deficits in other at risk infant populations. Inter-alpha inhibitor proteins (IAIPs) are a family of structurally related plasma proteins that modulate the systemic inflammatory response to infection and have been shown to attenuate cell death and improve learning outcomes after neonatal brain injury in rats. Here, we show that systemic administration of IAIPs during the early HI injury cascade ameliorates complex auditory discrimination deficits as compared to untreated HI injured subjects, despite reductions in brain weight. These findings have significant clinical implications for improving central auditory processing deficits linked to language learning in neonates with HI related brain injury.


Assuntos
alfa-Globulinas/administração & dosagem , Transtornos da Percepção Auditiva/tratamento farmacológico , Hipóxia-Isquemia Encefálica/complicações , Estimulação Acústica , Animais , Animais Recém-Nascidos , Transtornos da Percepção Auditiva/etiologia , Transtornos da Percepção Auditiva/fisiopatologia , Sinais (Psicologia) , Discriminação Psicológica/efeitos dos fármacos , Masculino , Ratos Wistar
16.
FASEB J ; 29(5): 1739-53, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25609424

RESUMO

Impaired blood-brain barrier function represents an important component of hypoxic-ischemic brain injury in the perinatal period. Proinflammatory cytokines could contribute to ischemia-related blood-brain barrier dysfunction. IL-6 increases vascular endothelial cell monolayer permeability in vitro. However, contributions of IL-6 to blood-brain barrier abnormalities have not been examined in the immature brain in vivo. We generated pharmacologic quantities of ovine-specific neutralizing anti-IL-6 mAbs and systemically infused mAbs into fetal sheep at 126 days of gestation after exposure to brain ischemia. Anti-IL-6 mAbs were measured by ELISA in fetal plasma, cerebral cortex, and cerebrospinal fluid, blood-brain barrier permeability was quantified using the blood-to-brain transfer constant in brain regions, and IL-6, tight junction proteins, and plasmalemma vesicle protein (PLVAP) were detected by Western immunoblot. Anti-IL-6 mAb infusions resulted in increases in mAb (P < 0.05) in plasma, brain parenchyma, and cerebrospinal fluid and decreases in brain IL-6 protein. Twenty-four hours after ischemia, anti-IL-6 mAb infusions attenuated ischemia-related increases in blood-brain barrier permeability and modulated tight junction and PLVAP protein expression in fetal brain. We conclude that inhibiting the effects of IL-6 protein with systemic infusions of neutralizing antibodies attenuates ischemia-related increases in blood-brain barrier permeability by inhibiting IL-6 and modulates tight junction proteins after ischemia.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Feto/fisiologia , Interleucina-6/antagonistas & inibidores , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Barreira Hematoencefálica/fisiopatologia , Western Blotting , Isquemia Encefálica/fisiopatologia , Proteínas de Transporte/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Feminino , Feto/efeitos dos fármacos , Interleucina-6/imunologia , Interleucina-6/metabolismo , Proteínas de Membrana/metabolismo , Gravidez , Traumatismo por Reperfusão/fisiopatologia , Ovinos , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
17.
Neurobiol Dis ; 73: 118-29, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25258170

RESUMO

We have previously shown that increases in blood-brain barrier permeability represent an important component of ischemia-reperfusion related brain injury in the fetus. Pro-inflammatory cytokines could contribute to these abnormalities in blood-brain barrier function. We have generated pharmacological quantities of mouse anti-ovine interleukin-1ß monoclonal antibody and shown that this antibody has very high sensitivity and specificity for interleukin-1ß protein. This antibody also neutralizes the effects of interleukin-1ß protein in vitro. In the current study, we hypothesized that the neutralizing anti-interleukin-1ß monoclonal antibody attenuates ischemia-reperfusion related fetal blood-brain barrier dysfunction. Instrumented ovine fetuses at 127 days of gestation were studied after 30 min of carotid occlusion and 24h of reperfusion. Groups were sham operated placebo-control- (n=5), ischemia-placebo- (n=6), ischemia-anti-IL-1ß antibody- (n=7), and sham-control antibody- (n=2) treated animals. Systemic infusions of placebo (0.154M NaCl) or anti-interleukin-1ß monoclonal antibody (5.1±0.6 mg/kg) were given intravenously to the same sham or ischemic group of fetuses at 15 min and 4h after ischemia. Concentrations of interleukin-1ß protein and anti-interleukin-1ß monoclonal antibody were measured by ELISA in fetal plasma, cerebrospinal fluid, and parietal cerebral cortex. Blood-brain barrier permeability was quantified using the blood-to-brain transfer constant (Ki) with α-aminoisobutyric acid in multiple brain regions. Interleukin-1ß protein was also measured in parietal cerebral cortices and tight junction proteins in multiple brain regions by Western immunoblot. Cerebral cortical interleukin-1ß protein increased (P<0.001) after ischemia-reperfusion. After anti-interleukin-1ß monoclonal antibody infusions, plasma anti-interleukin-1ß monoclonal antibody was elevated (P<0.001), brain anti-interleukin-1ß monoclonal antibody levels were higher (P<0.03), and interleukin-1ß protein concentrations (P<0.03) and protein expressions (P<0.001) were lower in the monoclonal antibody-treated group than in placebo-treated-ischemia-reperfusion group. Monoclonal antibody infusions attenuated ischemia-reperfusion-related increases in Ki across the brain regions (P<0.04), and Ki showed an inverse linear correlation (r= -0.65, P<0.02) with anti-interleukin-1ß monoclonal antibody concentrations in the parietal cortex, but had little effect on tight junction protein expression. We conclude that systemic anti-interleukin-1ß monoclonal antibody infusions after ischemia result in brain anti-interleukin-1ß antibody uptake, and attenuate ischemia-reperfusion-related interleukin-1ß protein up-regulation and increases in blood-brain barrier permeability across brain regions in the fetus. The pro-inflammatory cytokine, interleukin-1ß, contributes to impaired blood-brain barrier function after ischemia in the fetus.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Barreira Hematoencefálica/efeitos dos fármacos , Hipóxia Fetal/tratamento farmacológico , Hipóxia Fetal/patologia , Interleucina-1beta/imunologia , Animais , Anticorpos Neutralizantes/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Barreira Hematoencefálica/fisiopatologia , Encéfalo/embriologia , Encéfalo/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Estenose das Carótidas/complicações , Citocinas/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Ensaio de Imunoadsorção Enzimática , Feminino , Hipóxia Fetal/etiologia , Frequência Cardíaca Fetal/efeitos dos fármacos , Interleucina-1beta/metabolismo , Camundongos , Gravidez , Fluxo Sanguíneo Regional/efeitos dos fármacos , Ovinos , Proteínas de Junções Íntimas/metabolismo
18.
J Perinatol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459372

RESUMO

OBJECTIVE: To examine nutritional intake profiles and growth trajectories of extremely low birth weight (ELBW) infants who develop severe bronchopulmonary dysplasia (BPD). STUDY DESIGN: Case-control study using multiple logistic regression analysis with generalized estimating equations (GEE) to adjust for matching. RESULTS: Cumulative and mean fluid intakes were higher (p = 0.003) and caloric intakes lower (p < 0.0001) through week two in infants who developed severe BPD (n = 120) versus those without severe BPD (n = 104). Mean caloric intake through week 12 was lower in infants who developed severe BPD (102 ± 10.1 vs. 107 ± 8.5 kcal/kg/day, p < 0.0001). In the logistic regression models, lower mean caloric intake through week 12 was associated with increased risk of developing severe BPD. Linear growth reduced the odds of BPD by ~30% for each Z-score point. CONCLUSIONS: Higher fluid and lower total caloric intakes and reductions in linear growth were independently associated with an increased risk of developing severe BPD in ELBW infants.

19.
Neurotherapeutics ; 21(3): e00341, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453562

RESUMO

Therapeutic hypothermia is the standard of care for hypoxic-ischemic (HI) encephalopathy. Inter-alpha Inhibitor Proteins (IAIPs) attenuate brain injury after HI in neonatal rats. Human (h) IAIPs (60 â€‹mg/kg) or placebo (PL) were given 15 â€‹min, 24 and 48 â€‹h to postnatal (P) day-7 rats after carotid ligation and 8% oxygen for 90 â€‹min with (30 â€‹°C) and without (36 â€‹°C) exposure to hypothermia 1.5 â€‹h after HI for 3 â€‹h. Hemispheric volume atrophy (P14) and neurobehavioral tests including righting reflex (P8-P10), small open field (P13-P14), and negative geotaxis (P14) were determined. Hemispheric volume atrophy in males was reduced (P â€‹< â€‹0.05) by 41.9% in the normothermic-IAIP and 28.1% in the hypothermic-IAIP compared with the normothermic-PL group, and in females reduced (P â€‹< â€‹0.05) by 30.3% in the normothermic-IAIP, 45.7% in hypothermic-PL, and 55.2% in hypothermic-IAIP compared with the normothermic-PL group after HI. Hypothermia improved (P â€‹< â€‹0.05) the neuroprotective effects of hIAIPs in females. The neuroprotective efficacy of hIAIPs was comparable to hypothermia in female rats (P â€‹= â€‹0.183). Treatment with hIAIPs, hypothermia, and hIAIPs with hypothermia decreased (P â€‹< â€‹0.05) the latency to enter the peripheral zone in the small open field test in males. We conclude that hIAIPs provide neuroprotection from HI brain injury that is comparable to the protection by hypothermia, hypothermia increases the effects of hIAIPs in females, and hIAIPs and hypothermia exhibit some sex-related differential effects.


Assuntos
alfa-Globulinas , Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Feminino , Humanos , Masculino , Ratos , alfa-Globulinas/metabolismo , alfa-Globulinas/farmacologia , Animais Recém-Nascidos , Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/terapia , Hipóxia-Isquemia Encefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley
20.
Early Hum Dev ; 193: 106036, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733833

RESUMO

BACKGROUND: Inter-alpha inhibitor proteins (IAIPs) are structurally related proteins found in the systemic circulation with immunomodulatory anti-inflammatory properties. Reduced levels are found in inflammatory related conditions including sepsis and necrotizing enterocolitis, and in neonatal rodents after exposure to hypoxia ischemia. In the current study, cord blood IAIP levels were measured in neonates with and without exposure to hypoxic-ischemic encephalopathy (HIE). METHODS: This is a prospective cohort study including infants born ≥36 weeks over a one-year period. Term pregnancies were divided into two groups: a "reference control" (uncomplicated term deliveries), and "moderate to severe HIE" (qualifying for therapeutic hypothermia). IAIPs were quantified using a sensitive ELISA on the cord blood samples. RESULTS: The study included 57 newborns: Reference control group (n = 13) and moderate/severe HIE group (n = 44). Measurement of IAIP cord blood concentrations in moderate to severe HIE group [278.2 (138.0, 366.0) µg/ml] revealed significantly lower IAIP concentrations compared with the control group [418.6 (384.5, 445.0) µg/ml] (p = 0.002). CONCLUSIONS: These findings suggest a potential role for IAIPs as indicators of neonates at risk for HIE. IAIP levels could have diagnostic implications in the management of HIE. Future research is required to explore the relationship between HIE and IAIPs as biomarkers for disease severity. CATEGORY OF STUDY: Translational.


Assuntos
alfa-Globulinas , Sangue Fetal , Hipóxia-Isquemia Encefálica , Humanos , Recém-Nascido , Sangue Fetal/química , Sangue Fetal/metabolismo , Feminino , Hipóxia-Isquemia Encefálica/sangue , Masculino , Estudos de Casos e Controles , Estudos Prospectivos , Biomarcadores/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA