Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 153(1): 014705, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640818

RESUMO

The corrosion and oxidation of actinide metals, leading to the formation of metal-oxide surface layers with the catalytic evolution of hydrogen, impacts the management of nuclear materials. Here, the interaction of hydrogen with actinide dioxide (AnO2, An = U, Np, or Pu) (011) surfaces by Hubbard corrected density functional theory (PBEsol+U) has been studied, including spin-orbit interactions and non-collinear 3k anti-ferromagnetic behavior. The actinide dioxides crystalize in the fluorite-type structure, and although the (111) surface dominates the crystal morphology, the (011) surface energetics may lead to more significant interaction with hydrogen. The dissociative adsorption of hydrogen on the UO2 (0.44 eV), NpO2 (-0.47 eV), and PuO2 (-1.71 eV) (011) surfaces has been calculated. It is found that hydrogen dissociates on the PuO2 (011) surface; however, UO2 (011) and NpO2 (011) surfaces are relatively inert. Recombination of hydrogen ions is likely to occur on the UO2 (011) and NpO2 (011) surfaces, whereas hydroxide formation is shown to occur on the PuO2 (011) surface, which distorts the surface structure.

2.
Phys Chem Chem Phys ; 21(2): 760-771, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30547167

RESUMO

The magnetic structure of the actinide dioxides (AnO2) remains a field of intense research. A low-temperature experimental investigation of the magnetic ground-state is complicated by thermal energy released from the radioactive decay of the actinide nuclei. To establish the magnetic ground-state, we have employed high-accuracy computational methods to systematically probe different magnetic structures. A transverse 1k antiferromagnetic ground-state with Fmmm (No. 69) crystal symmetry has been established for UO2, whereas a ferromagnetic (111) ground-state with R3[combining macron]m (No. 166) has been established for NpO2. Band structure calculations have been performed to analyse these results.

3.
J Chem Phys ; 150(13): 134701, 2019 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-30954055

RESUMO

The interaction of atomic and molecular hydrogen with actinide dioxide (AnO2, An = U, Np, Pu) (111) surfaces has been investigated by DFT+U, where noncollinear 3k antiferromagnetic behaviour and spin-orbit interactions are considered. The adsorption of atomic hydrogen forms a hydroxide group, coupled to the reduction of an actinide ion. The energy of atomic hydrogen adsorption on the UO2 (0.82 eV), NpO2 (-0.10 eV), and PuO2 (-1.25 eV) surfaces has been calculated. The dissociation of molecular hydrogen is not observed, shown to be due to kinetic rather than thermodynamic factors. As a barrier to the formation of a second hydroxyl group, an unusual charge distribution has been shown. This could be a limitation of a (1·1) unit cell method or an artefact of the systems. The recombination of hydrogen ions on the AnO2 (111) surfaces is favoured over hydroxide formation.

4.
Phys Chem Chem Phys ; 20(32): 20943-20951, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30067255

RESUMO

A thorough understanding of the chemistry of PuO2 is critical to the design of next-generation nuclear fuels and the long-term storage of nuclear materials. Despite over 75 years of study, the ground-state magnetic structure of PuO2 remains a matter of much debate. Experimental studies loosely indicate a diamagnetic (DM) ground-state, whereas theoretical methods have proposed either a collinear ferromagnetic (FM) or anti-ferromagnetic (AFM) ground-state, both of which would be expected to cause a distortion from the reported Fm3[combining macron]m symmetry. In this work, we have used accurate calculations based on the density functional theory (DFT) to systematically investigate the magnetic structure of PuO2 to resolve this controversy. We have explicitly considered electron-correlation, spin-orbit interaction and noncollinear magnetic contributions to identify a hereto unknown longitudinal 3k AFM ground-state that retains Fm3[combining macron]m crystal symmetry. Given the broad interest in plutonium materials and the inherent experimental difficulties of handling this compound, the results presented in this paper have considerable implications for future computational studies relating to PuO2 and related actinide structures. As the crystal structure is coupled by spin-orbit interactions to the magnetic state, it is imperative to consider relativity when creating computational models.

5.
Inorg Chem ; 53(23): 12253-64, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25405569

RESUMO

Uranium trioxide (UO3) is known to adopt a variety of crystalline and amorphous phases. Here we applied the Perdew-Burke-Ernzerhof functional + U formalism to predict structural, electronic, and elastic properties of five experimentally determined UO3 polymorphs, in addition to their relative stability. The simulations reveal that the methodology is well-suited to describe the different polymorphs. We found better agreement with experiment for simpler phases where all bonds are similar (α- and δ-), while some differences are seen for those with more complex bonding (ß-, γ-, and η-), which we address in terms of the disorder and defective nature of the experimental samples. Our calculations also predict the presence of uranyl bonds to affect the elastic and electronic properties. Phases containing uranyl bonds tend to have smaller band gaps and bulk moduli under 100 GPa contrary to those without uranyl bonds, which have larger band gaps and bulk moduli greater than 150 GPa. In line with experimental observations, we predict the most thermodynamically stable polymorph as γ-UO3, the least stable as α-UO3, and the most stable at high pressure as η-UO3.

6.
J Chem Theory Comput ; 20(12): 5196-5214, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38829777

RESUMO

Predicting the degradation processes of molecules over long time scales is a key aspect of industrial materials design. However, it is made computationally challenging by the need to construct large networks of chemical reactions that are relevant to the experimental conditions that kinetic models must mirror, with every reaction requiring accurate kinetic data. Here, we showcase Kinetica.jl, a new software package for constructing large-scale chemical reaction networks in a fully automated fashion by exploring chemical reaction space with a kinetics-driven algorithm; coupled to efficient machine-learning models of activation energies for sampled elementary reactions, we show how this approach readily enables generation and kinetic characterization of networks containing ∼103 chemical species and ≃104-105 reactions. Symbolic-numeric modeling of the generated reaction networks is used to allow for flexible, efficient computation of kinetic profiles under experimentally realizable conditions such as continuously variable temperature regimes, enabling direct connection between bottom-up reaction networks and experimental observations. Highly efficient propagation of long-time-scale kinetic profiles is required for automated reaction network refinement and is enabled here by a new discrete kinetic approximation. The resulting Kinetica.jl simulation package therefore enables automated generation, characterization, and long-time-scale modeling of complex chemical reaction systems. We demonstrate this for hydrocarbon pyrolysis simulated over time scales of seconds, using transient temperature profiles representing those of tubular flow reactor experiments.

7.
Dalton Trans ; 44(6): 2613-22, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25382599

RESUMO

Oxidation of UO(2) in the nuclear fuel cycle leads to formation of the layered uranium oxides. Here we present DFT simulations of U(2)O(5) and U(3)O(8) using the PBE + U functional to examine their structural, electronic and mechanical properties. We build on previous simulation studies of Amm2 α-U(3)O(8), P2(1)/m ß-U(3)O(8) and P6[combining macron]2m γ-U(3)O(8) by including C222 α-U(3)O(8), Cmcm ß-U(3)O(8) and Pnma δ-U(2)O(5). All materials are predicted to be insulators with no preference for ferromagnetic or antiferromagnetic ordering. We predict δ-U(2)O(5) contains exclusively U(5+) ions in an even mixture of distorted octahedral and pentagonal bipyramidal coordination sites. In each U(3)O(8) polymorph modelled we predict U(5+) ions in pentagonal bipyramidal coordination and U(6+) in octahedral coordination, with no U(4+) present. The elastic constants of each phase have been calculated and the bulk modulus is found to be inversely proportional to the volume per uranium ion. Finally, a number of thermodynamic properties are estimated, showing general agreement with available experiments; for example α- and ß-U(3)O(8) are predicted to be stable at low temperatures but ß-U(3)O(8) and γ-U(3)O(8) dominate at high temperature and high pressure respectively.

8.
J Am Chem Soc ; 126(5): 1569-76, 2004 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-14759217

RESUMO

We present the results of a combined theoretical/experimental study into a new class of kinetic inhibitor of gas hydrate formation. The inhibitors are based on quaternary ammonium zwitterions, and were identified from a computational screen. Molecular dynamics simulations were used to characterize the effect of the inhibitor on the interface between a type II hydrate and natural gas. These simulations show that the inhibitor is bifunctional, with the hydrophobic end being compatible with the water structure present at the hydrate interface, while the negatively charged functional group promotes a long ranged water structure that is inconsistent with the hydrate phase; the sulfonate-induced structure was found to propagate strongly over several solvation shells. The compound was subsequently synthesized and used in an experimental study of both THF and ethane hydrate formation, and was shown to have an activity that was comparable with an existing commercial kinetic inhibitor: PVP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA