Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Pathog ; 11(6): e1004995, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26098424

RESUMO

Respiratory syncytial virus (RSV) causes severe lower respiratory tract infections, yet no vaccines or effective therapeutics are available. ALS-8176 is a first-in-class nucleoside analog prodrug effective in RSV-infected adult volunteers, and currently under evaluation in hospitalized infants. Here, we report the mechanism of inhibition and selectivity of ALS-8176 and its parent ALS-8112. ALS-8176 inhibited RSV replication in non-human primates, while ALS-8112 inhibited all strains of RSV in vitro and was specific for paramyxoviruses and rhabdoviruses. The antiviral effect of ALS-8112 was mediated by the intracellular formation of its 5'-triphosphate metabolite (ALS-8112-TP) inhibiting the viral RNA polymerase. ALS-8112 selected for resistance-associated mutations within the region of the L gene of RSV encoding the RNA polymerase. In biochemical assays, ALS-8112-TP was efficiently recognized by the recombinant RSV polymerase complex, causing chain termination of RNA synthesis. ALS-8112-TP did not inhibit polymerases from host or viruses unrelated to RSV such as hepatitis C virus (HCV), whereas structurally related molecules displayed dual RSV/HCV inhibition. The combination of molecular modeling and enzymatic analysis showed that both the 2'F and the 4'ClCH2 groups contributed to the selectivity of ALS-8112-TP. The lack of antiviral effect of ALS-8112-TP against HCV polymerase was caused by Asn291 that is well-conserved within positive-strand RNA viruses. This represents the first comparative study employing recombinant RSV and HCV polymerases to define the selectivity of clinically relevant nucleotide analogs. Understanding nucleotide selectivity towards distant viral RNA polymerases could not only be used to repurpose existing drugs against new viral infections, but also to design novel molecules.


Assuntos
Antivirais/farmacologia , Citidina Trifosfato/análogos & derivados , Citidina Trifosfato/farmacologia , RNA Polimerases Dirigidas por DNA/metabolismo , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Humanos , RNA Viral/genética , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Proteínas Virais/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-18066858

RESUMO

Cyclic phosphonomethoxy pyrimidine nucleosides that are bioisosteres of the monophosphate metabolites of HIV reverse transcriptase (RT) inhibitors AZT, d4T, and ddC have been synthesized. The RT inhibitory activities of the phosphonates were reduced for both dideoxy (dd) and dideoxydidehydro (d4) analogs compared to the nucleosides. Bis-isopropyloxymethylcarbonyl (BisPOC) prodrugs were prepared on selected compounds and provided > 150-fold improvements in antiviral activity.


Assuntos
Fármacos Anti-HIV/síntese química , Nucleosídeos/síntese química , Organofosfonatos/síntese química , Pró-Fármacos/síntese química , Fármacos Anti-HIV/química , Ciclização/efeitos dos fármacos , Farmacorresistência Viral/efeitos dos fármacos , Nucleosídeos/química , Organofosfonatos/química , Pró-Fármacos/química , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Zidovudina/química , Zidovudina/farmacologia
3.
ACS Chem Biol ; 12(1): 83-91, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28103684

RESUMO

Human respiratory syncytial virus (RSV) is a negative-sense RNA virus and a significant cause of respiratory infection in infants and the elderly. No effective vaccines or antiviral therapies are available for the treatment of RSV. ALS-8176 is a first-in-class nucleoside prodrug inhibitor of RSV replication currently under clinical evaluation. ALS-8112, the parent molecule of ALS-8176, undergoes intracellular phosphorylation, yielding the active 5'-triphosphate metabolite. The host kinases responsible for this conversion are not known. Therefore, elucidation of the ALS-8112 activation pathway is key to further understanding its conversion mechanism, particularly given its potent antiviral effects. Here, we have identified the activation pathway of ALS-8112 and show it is unlike other antiviral cytidine analogs. The first step, driven by deoxycytidine kinase (dCK), is highly efficient, while the second step limits the formation of the active 5'-triphosphate species. ALS-8112 is a 2'- and 4'-modified nucleoside analog, prompting us to investigate dCK recognition of other 2'- and 4'-modified nucleosides. Our biochemical approach along with computational modeling contributes to an enhanced structure-activity profile for dCK. These results highlight an exciting potential to optimize nucleoside analogs based on the second activation step and increased attention toward nucleoside diphosphate and triphosphate prodrugs in drug discovery.


Assuntos
Ativação Metabólica , Antivirais/metabolismo , Desoxicitidina/análogos & derivados , Pró-Fármacos/metabolismo , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sinciciais Respiratórios/enzimologia , Antivirais/farmacologia , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Desoxicitidina Quinase/metabolismo , Descoberta de Drogas , Humanos , Fosforilação , Pró-Fármacos/farmacologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/fisiologia , Replicação Viral/efeitos dos fármacos
4.
J Mol Biol ; 340(3): 571-85, 2004 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-15210355

RESUMO

We investigate the effect of structural gatekeepers on the folding of the ribosomal protein S6. Folding thermodynamics and early refolding kinetics are studied for this system utilizing computer simulations of a minimalist protein model. When gatekeepers are eliminated, the thermodynamic signature of a folding intermediate emerges, and a marked decrease in folding efficiency is observed. We explain the prerequisites that determine the "strength" of a given gatekeeper. The investigated gatekeepers are found to have distinct functions, and to guide the folding and time-dependent packing of non-overlapping secondary structure elements in the protein. Gatekeepers avoid kinetic traps during folding by favoring the formation of "productive topologies" on the way to the native state. The trends in folding rates in the presence/absence of gatekeepers observed for our minimalist model of S6 are in very good agreement with experimental data on this protein.


Assuntos
Proteína S6 Ribossômica/química , Simulação por Computador , Modelos Moleculares , Dobramento de Proteína , Termodinâmica
5.
J Interferon Cytokine Res ; 35(8): 621-33, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25866898

RESUMO

Type 1 interferons (IFNs) have been shown to be efficacious against hepatitis C virus (HCV), hepatitis B virus (HBV), and some cancers with a significant drawback of short drug exposure. We have significantly improved the pharmacokinetic (PK) of consensus interferon (CIFN) by glycoengineering. We generated AL-624 by introducing 4 glycosylation sites. AL-624 was expressed, purified, and fractionated to yield 2-Gly, 3-Gly, and 4-Gly. In a rat PK study, AL-624 4-Gly exhibited a 6-fold increase of area under curve (AUC) and more than an 11-fold increase in time to half life (T1/2) over CIFN, suggesting the potential for weekly dosing (QW). In Yellow fever virus hamster model, QW of 4-Gly achieved similar efficacy to daily dosing (QD) CIFN and QW Peg-IFN-α-2a in overall survival rate and reduction of alanine aminotransferase (ALT) level. Further refinement resulted in development of AL-683 by addition of external glycosylation sites and its mouse homologue. AL-683 maintains undiminished biological potency in HCV replicon. In mouse PK/pharmacodynamic (PD) studies, AL-683 homologue has a ∼37-fold improvement in T1/2 and a ∼33-fold improvement in AUC when compared with the unglycosylated mouse IFN-α-1. Significantly improved PD responses were also observed. The significant improvement of AL-683 PK over AL-624 suggests a bimonthly dosing regimen for AL-683. The possibility for once-a-month dosing could be realized by further optimization of manufacturing conditions.


Assuntos
Antivirais/farmacologia , Interferon-alfa/farmacologia , Animais , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/metabolismo , Linhagem Celular , Cricetinae , Desenho de Fármacos , Monitoramento de Medicamentos , Glicosilação , Humanos , Interferon-alfa/química , Interferon-alfa/genética , Interferon-alfa/isolamento & purificação , Interferon-alfa/metabolismo , Camundongos , Modelos Moleculares , Conformação Proteica , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(3 Pt 2B): 036706, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11909306

RESUMO

The results and methodology of large scale computer simulations of the two-dimensional dipolar Ising model with long-range interactions are reported. Systems as large as 117,649 particles were studied to elucidate the elementary excitations and phase diagram of two-dimensional systems, such as Langmuir monolayers, thin garnet films, and adsorbed films on solid surfaces, which spontaneously form patterns of stripes, bubbles, and intermediately shaped domains. The challenging numerical investigations of large scale systems with long-range interactions at low temperatures were made possible by combining the fast multipole method and a non-Metropolis Monte Carlo sampling technique. Our simulations provide evidence that, at sufficiently high ratios of the repulsive to the attractive coupling constant for the model, twofold stripe order in the systems of interest is lost through a defect-mediated mechanism. Heat capacity data and the excitations observed in our simulations as the system disorders indicate that it is most likely an instance of a Kosterlitz-Thouless phase transition. The results from simulations with and without external field are in excellent agreement with the predictions of an analytic scaling theory [A. D. Stoycheva and S. J. Singer, Phys. Rev. E 64, 016118 (2001)], confirming the phase diagram furnished by the analytic model. The scaling theory suggests that, under certain conditions, defect-mediated stripe melting may be supplanted by Ising like disordering within stripes for small repulsion strength. A qualitative discussion of a model that supports both disordering mechanisms is presented.

7.
Bioorg Med Chem ; 15(16): 5519-28, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17562366

RESUMO

Phosphonomethoxy nucleoside analogs of the thymine containing nucleoside reverse transcriptase inhibitors (NRTIs), 3'-azido-2',3'-dideoxythymidine (AZT), 2',3'-didehydro-2',3'-dideoxythymidine (d4T), and 2',3'-dideoxythymidine (ddT), were synthesized. The anti-HIV activity against wild-type and several major nucleoside-resistant strains of HIV-1 was evaluated together with the inhibition of wild-type HIV reverse transcriptase (RT). Phosphonomethoxy analog of d4T, 8 (d4TP), demonstrated antiviral activity with an EC(50) value of 26 microM, whereas, phosphonomethoxy analogs of ddT, 7 (ddTP), and AZT, 6 (AZTP), were both inactive at concentrations up to 200 microM. Bis-isopropyloxymethylcarbonyl (bisPOC) prodrugs improved the anti-HIV activity of 7 and 8 by >150-fold and 29-fold, respectively, allowing for antiviral resistance to be determined. The K65R RT mutant virus was more resistant to the bisPOC prodrugs of 7 and 8 than bisPOC PMPA (tenofovir DF) 1. However, bisPOC prodrug of 7 demonstrated superior resistance toward the RT virus containing multiple thymidine analog mutations (6TAMs) indicating that new phosphonate nucleoside analogs may be suitable for targeting clinically relevant nucleoside resistant HIV-1 strains.


Assuntos
Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/toxicidade , Nucleosídeos/química , Nucleosídeos/toxicidade , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Timidina/química , Fármacos Anti-HIV/química , Linhagem Celular , Farmacorresistência Viral/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Metano/química , Estrutura Molecular , Nucleosídeos/síntese química , Compostos Organofosforados/síntese química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA