Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Molecules ; 25(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228044

RESUMO

The interactions of small molecule drugs with plasma serum albumin are important because of the influence of such interactions on the pharmacokinetics of these therapeutic agents. 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) is one such drug candidate that has recently gained attention for its promising clinical applications as an anti-cancer agent. This study sheds light upon key aspects of AICAR's pharmacokinetics, which are not well understood. We performed in-depth experimental and computational binding analyses of AICAR with human serum albumin (HSA) under simulated biochemical conditions, using ligand-dependent fluorescence sensitivity of HSA. This allowed us to characterize the strength and modes of binding, mechanism of fluorescence quenching, validation of FRET, and intermolecular interactions for the AICAR-HSA complexes. We determined that AICAR and HSA form two stable low-energy complexes, leading to conformational changes and quenching of protein fluorescence. Stern-Volmer analysis of the fluorescence data also revealed a collision-independent static mechanism for fluorescence quenching upon formation of the AICAR-HSA complex. Ligand-competitive displacement experiments, using known site-specific ligands for HSA's binding sites (I, II, and III) suggest that AICAR is capable of binding to both HSA site I (warfarin binding site, subdomain IIA) and site II (flufenamic acid binding site, subdomain IIIA). Computational molecular docking experiments corroborated these site-competitive experiments, revealing key hydrogen bonding interactions involved in stabilization of both AICAR-HSA complexes, reaffirming that AICAR binds to both site I and site II.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Simulação de Acoplamento Molecular , Ribonucleotídeos/metabolismo , Albumina Sérica Humana/metabolismo , Análise Espectral , Aminoimidazol Carboxamida/química , Aminoimidazol Carboxamida/metabolismo , Transferência de Energia , Humanos , Cinética , Ligação Proteica , Ribonucleotídeos/química , Albumina Sérica Humana/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Termodinâmica
2.
Bioorg Med Chem Lett ; 25(21): 4802-4807, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26254944

RESUMO

Despite the recent decline of natural product discovery programs in the pharmaceutical industry, approximately half of all new drug approvals still trace their structural origins to a natural product. Herein, we use principal component analysis to compare the structural and physicochemical features of drugs from natural product-based versus completely synthetic origins that were approved between 1981 and 2010. Drugs based on natural product structures display greater chemical diversity and occupy larger regions of chemical space than drugs from completely synthetic origins. Notably, synthetic drugs based on natural product pharmacophores also exhibit lower hydrophobicity and greater stereochemical content than drugs from completely synthetic origins. These results illustrate that structural features found in natural products can be successfully incorporated into synthetic drugs, thereby increasing the chemical diversity available for small-molecule drug discovery.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/síntese química , Informática , Preparações Farmacêuticas/química , Preparações Farmacêuticas/síntese química , Aprovação de Drogas , Interações Hidrofóbicas e Hidrofílicas
3.
Nat Chem Biol ; 8(4): 358-65, 2012 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-22406518

RESUMO

Macrocycles are key structural elements in numerous bioactive small molecules and are attractive targets in the diversity-oriented synthesis of natural product-based libraries. However, efficient and systematic access to diverse collections of macrocycles has proven difficult using classical macrocyclization reactions. To address this problem, we have developed a concise, modular approach to the diversity-oriented synthesis of macrolactones and macrolactams involving oxidative cleavage of a bridging double bond in polycyclic enol ethers and enamines. These substrates are assembled in only four or five synthetic steps and undergo ring expansion to afford highly functionalized macrocycles bearing handles for further diversification. In contrast to macrocyclization reactions of corresponding seco acids, the ring expansion reactions are efficient and insensitive to ring size and stereochemistry, overcoming key limitations of conventional approaches to systematic macrocycle synthesis. Cheminformatic analysis indicates that these macrocycles access regions of chemical space that overlap with natural products, distinct from currently targeted synthetic drugs.


Assuntos
Lactamas Macrocíclicas/síntese química , Lactonas/síntese química , Compostos Macrocíclicos/síntese química , Ciclização , Estrutura Molecular , Oxidantes/química , Análise de Componente Principal
4.
Biochem Mol Biol Educ ; 52(3): 276-290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38308532

RESUMO

We present a new highly interdisciplinary project-based course in computer aided drug discovery (CADD). This course was developed in response to a call for alternative pedagogical approaches during the COVID-19 pandemic, which caused the cancellation of a face-to-face summer research program sponsored by the Louisiana Biomedical Research Network (LBRN). The course integrates guided research and educational experiences for chemistry, biology, and computer science students. We implement research-based methods with publicly available tools in bioinformatics and molecular modeling to identify and prioritize promising antiviral drug candidates for COVID-19. The purpose of this course is three-fold: I. Implement an active learning and inclusive pedagogy that fosters student engagement and research mindset; II. Develop student interdisciplinary research skills that are highly beneficial in a broader scientific context; III. Demonstrate that pedagogical shifts (initially incurred during the COVID-19 pandemic) can furnish longer-term instructional benefits. The course, which has now been successfully taught a total of five times, incorporates four modules, including lectures/discussions, live demos, inquiry-based assignments, and science communication.


Assuntos
COVID-19 , Descoberta de Drogas , SARS-CoV-2 , Estudantes , Humanos , Estudantes/psicologia , COVID-19/epidemiologia , Descoberta de Drogas/educação , Pandemias , Currículo , Biologia Computacional/educação , Pesquisa Biomédica/educação , Aprendizagem Baseada em Problemas/métodos , Antivirais
5.
Mol Cancer Ther ; 21(7): 1115-1124, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35499386

RESUMO

Patients with prostate cancer whose tumors bear deleterious mutations in DNA-repair pathways often respond to PARP inhibitors. Studies were conducted to compare the activity of several PARP inhibitors in vitro and their tissue exposure and in vivo efficacy in mice bearing PC-3M-luc-C6 prostate tumors grown subcutaneously or in bone. Niraparib, olaparib, rucaparib, and talazoparib were compared in proliferation assays, using several prostate tumor cell lines and in a cell-free PARP-trapping assay. PC-3M-luc-C6 cells were approximately 12- to 20-fold more sensitive to PARP inhibition than other prostate tumor lines, suggesting that these cells bear a DNA damage repair defect. The tissue exposure and efficacy of these PARP inhibitors were evaluated in vivo in PC-3M-luc-C6 subcutaneous and bone metastasis tumor models. A steady-state pharmacokinetic study in PC-3M-luc-C6 tumor-bearing mice showed that all of the PARP inhibitors had favorable subcutaneous tumor exposure, but niraparib was differentiated by superior bone marrow exposure compared with the other drugs. In a PC-3M-luc-C6 subcutaneous tumor efficacy study, niraparib, olaparib, and talazoparib inhibited tumor growth and increased survival to a similar degree. In contrast, in the PC-3M-luc-C6 bone metastasis model, niraparib showed the most potent inhibition of bone tumor growth compared with the other therapies (67% vs. 40%-45% on day 17), and the best survival improvement over vehicle control [hazard ratio (HR), 0.28 vs. HR, 0.46-0.59] and over other therapies (HR, 1.68-2.16). These results show that niraparib has superior bone marrow exposure and greater inhibition of tumor growth in bone, compared with olaparib, rucaparib, and talazoparib.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Humanos , Indazóis , Masculino , Camundongos , Piperidinas , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Distribuição Tecidual
6.
J Med Chem ; 65(15): 10419-10440, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35862732

RESUMO

Activated factor XI (FXIa) inhibitors are promising novel anticoagulants with low bleeding risk compared with current anticoagulants. The discovery of potent FXIa inhibitors with good oral bioavailability has been challenging. Herein, we describe our discovery effort, utilizing nonclassical interactions to improve potency, cellular permeability, and oral bioavailability by enhancing the binding while reducing polar atoms. Beginning with literature-inspired pyridine N-oxide-based FXIa inhibitor 1, the imidazole linker was first replaced with a pyrazole moiety to establish a polar C-H···water hydrogen-bonding interaction. Then, structure-based drug design was employed to modify lead molecule 2d in the P1' and P2' regions, with substituents interacting with key residues through various nonclassical interactions. As a result, a potent FXIa inhibitor 3f (Ki = 0.17 nM) was discovered. This compound demonstrated oral bioavailability in preclinical species (rat 36.4%, dog 80.5%, and monkey 43.0%) and displayed a dose-dependent antithrombotic effect in a rabbit arteriovenous shunt model of thrombosis.


Assuntos
Fator XIa , Piridinas , Animais , Anticoagulantes/química , Anticoagulantes/farmacologia , Cães , Desenho de Fármacos , Fator XIa/metabolismo , Piridinas/farmacologia , Coelhos , Ratos
7.
Methods Enzymol ; 596: 1-21, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28911767

RESUMO

Equilibrium binding isotope effects (BIEs) report on the bond vibrational status of enzyme substrates in the Michaelis complex prior to the transition state and how they differ from the solution state. Accordingly, BIEs provide an experimental means of interrogating enzyme-substrate interactions and inform on the influence of enzyme-mediated atomic distortions in modulating substrate reactivity. In this chapter, we outline a rapid equilibrium dialysis method that our lab has used to measure BIEs for several enzyme systems. Implementation of the rapid equilibrium dialysis approach is described in the context of our recent studies on the substrate bonding environment for the human protein lysine N-methyltransferase NSD2. A summary of BIE effects provides context for the range of experimental values.


Assuntos
Ensaios Enzimáticos/métodos , Histona-Lisina N-Metiltransferase/química , Isótopos/química , Modelos Moleculares , Proteínas Repressoras/química , Sítios de Ligação , Diálise/métodos , Ensaios Enzimáticos/instrumentação , Humanos , Cinética , Especificidade por Substrato , Vibração
8.
ACS Chem Biol ; 12(2): 342-346, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-27997103

RESUMO

Phenylethanolamine N-methyltransferase (PNMT) catalyzes the S-adenosyl-l-methionine (SAM)-dependent conversion of norepinephrine to epinephrine. Epinephrine has been associated with critical processes in humans including the control of respiration and blood pressure. Additionally, PNMT activity has been suggested to play a role in hypertension and Alzheimer's disease. In the current study, labeled SAM substrates were used to measure primary methyl-14C and 36S and secondary methyl-3H, 5'-3H, and 5'-14C intrinsic kinetic isotope effects for human PNMT. The transition state of human PNMT was modeled by matching kinetic isotope effects predicted via quantum chemical calculations to intrinsic values. The model provides information on the geometry and electrostatics of the human PNMT transition state structure and indicates that human PNMT catalyzes the formation of epinephrine through an early SN2 transition state in which methyl transfer is rate-limiting.


Assuntos
Feniletanolamina N-Metiltransferase/química , Humanos , Isótopos , Cinética , Conformação Proteica
9.
ACS Chem Biol ; 11(5): 1383-90, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26886255

RESUMO

Saporin L3 from the leaves of the common soapwort is a catalyst for hydrolytic depurination of adenine from RNA. Saporin L3 is a type 1 ribosome inactivating protein (RIP) composed only of a catalytic domain. Other RIPs have been used in immunotoxin cancer therapy, but off-target effects have limited their development. In the current study, we use transition state theory to understand the chemical mechanism and transition state structure of saporin L3. In favorable cases, transition state structures guide the design of transition state analogues as inhibitors. Kinetic isotope effects (KIEs) were determined for an A14C mutant of saporin L3. To permit KIE measurements, small stem-loop RNAs that contain an AGGG tetraloop structure were enzymatically synthesized with the single adenylate bearing specific isotopic substitutions. KIEs were measured and corrected for forward commitment to obtain intrinsic values. A model of the transition state structure for depurination of stem-loop RNA (5'-GGGAGGGCCC-3') by saporin L3 was determined by matching KIE values predicted via quantum chemical calculations to a family of intrinsic KIEs. This model indicates saporin L3 displays a late transition state with the N-ribosidic bond to the adenine nearly cleaved, and the attacking water nucleophile weakly bonded to the ribosyl anomeric carbon. The transition state retains partial ribocation character, a feature common to most N-ribosyl transferases. However, the transition state geometry for saporin L3 is distinct from ricin A-chain, the only other RIP whose transition state is known.


Assuntos
Adenina/química , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA/química , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saponaria/enzimologia , Sequência de Bases/efeitos dos fármacos , Hidrólise/efeitos dos fármacos , Modelos Moleculares , Proteínas Inativadoras de Ribossomos Tipo 1/química , Saponaria/química , Saporinas
10.
ACS Chem Biol ; 11(6): 1669-76, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27019223

RESUMO

5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is a bacterial enzyme that catalyzes the hydrolysis of the N-ribosidic bond in 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH). MTAN activity has been linked to quorum sensing pathways, polyamine biosynthesis, and adenine salvage. Previously, the coding sequence of Rv0091 was annotated as a putative MTAN in Mycobacterium tuberculosis. Rv0091 was expressed in Escherichia coli, purified to homogeneity, and shown to be a homodimer, consistent with MTANs from other microorganisms. Substrate specificity for Rv0091 gave a preference for 5'-deoxyadenosine relative to MTA or SAH. Intrinsic kinetic isotope effects (KIEs) for the hydrolysis of [1'-(3)H], [1'-(14)C], [5'-(3)H2], [9-(15)N], and [7-(15)N]MTA were determined to be 1.207, 1.038, 0.998, 1.021, and 0.998, respectively. A model for the transition state structure of Rv0091 was determined by matching KIE values predicted via quantum chemical calculations to the intrinsic KIEs. The transition state shows a substantial loss of C1'-N9 bond order, well-developed oxocarbenium character of the ribosyl ring, and weak participation of the water nucleophile. Electrostatic potential surface maps for the Rv0091 transition state structure show similarity to DADMe-immucillin transition state analogues. DADMe-immucillin transition state analogues showed strong inhibition of Rv0091, with the most potent inhibitor (5'-hexylthio-DADMe-immucillinA) displaying a Ki value of 87 pM.


Assuntos
Adenosina/análogos & derivados , Adenosina/química , Imino Furanoses/química , Mycobacterium tuberculosis/enzimologia , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Pirimidinonas/química , Pirrolidinas/química , Desoxiadenosinas/química , Purina-Núcleosídeo Fosforilase/química , Teoria Quântica , S-Adenosil-Homocisteína/química , Tionucleosídeos/química
11.
ACS Chem Biol ; 10(10): 2182-6, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26288086

RESUMO

Dihydropteroate synthase is a key enzyme in folate biosynthesis and is the target of the sulfonamide class of antimicrobials. Equilibrium binding isotope effects and density functional theory calculations indicate that the substrate binding sites for para-aminobenzoic acid on the dihydropteroate synthase enzymes from Staphylococcus aureus and Plasmodium falciparum present distinct chemical environments. Specifically, we show that para-aminobenzoic acid occupies a more sterically constrained vibrational environment when bound to dihydropteroate synthase from P. falciparum relative to that of S. aureus. Deletion of a nonhomologous, parasite-specific insert from the plasmodial dihydropteroate synthase abrogated the binding of para-aminobenzoic acid. The loop specific to P. falciparum is important for effective substrate binding and therefore plays a role in modulating the chemical environment at the substrate binding site.


Assuntos
Ácido 4-Aminobenzoico/química , Di-Hidropteroato Sintase/química , Modelos Moleculares , Plasmodium falciparum/enzimologia , Staphylococcus aureus/enzimologia , Ácido 4-Aminobenzoico/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Hidrogênio/química , Isótopos/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Alinhamento de Sequência
12.
Methods Mol Biol ; 1263: 225-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25618349

RESUMO

Principal component analysis (PCA) is a useful tool in the design and planning of chemical libraries. PCA can be used to reveal differences in structural and physicochemical parameters between various classes of compounds by displaying them in a convenient graphical format. Herein, we demonstrate the use of PCA to gain insight into structural features that differentiate natural products, synthetic drugs, natural product-like libraries, and drug-like libraries, and show how the results can be used to guide library design.


Assuntos
Desenho de Fármacos , Análise de Componente Principal , Bibliotecas de Moléculas Pequenas , Produtos Biológicos/química , Preparações Farmacêuticas/química , Análise de Componente Principal/métodos
13.
Bioinformation ; 9(1): 9-17, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23390338

RESUMO

Purine nucleoside phosphorylase (PNP; EC: 2.4.2.1) is a key enzyme involved in the purine salvage pathway. A recent bioinformatic study by Yadav, P. K. et al. (Bioinformation 2012, 8(14), 664-672) reports PNP as an essential enzyme and potential drug target in community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). We conducted an analysis using the methodology outlined by the authors, but were unable to identify PNP as an essential gene product in CA-MRSA. In addition, the treatment of Staphylococcus aureus cultures with immucillin-H, a powerful inhibitor of PNP, resulted in the non-lethal attenuation of growth, suggesting that PNP activity is not essential for cell viability.

14.
Biochemistry ; 47(14): 4228-36, 2008 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-18335995

RESUMO

Approximately one-third of the world's population carries Staphylococcus aureus. The recent emergence of extreme drug resistant strains that are resistant to the "antibiotic of last resort", vancomycin, has caused a further increase in the pressing need to discover new drugs against this organism. The S. aureus enoyl reductase, saFabI, is a validated target for drug discovery. To drive the development of potent and selective saFabI inhibitors, we have studied the mechanism of the enzyme and analyzed the interaction of saFabI with triclosan and two related diphenyl ether inhibitors. Results from kinetic assays reveal that saFabI is NADPH-dependent, and prefers acyl carrier protein substrates carrying fatty acids with long acyl chains. On the basis of product inhibition studies, we propose that the reaction proceeds via an ordered sequential ternary complex, with the ACP substrate binding first, followed by NADPH. The interaction of NADPH with the enzyme has been further explored by site-directed mutagenesis, and residues R40 and K41 have been shown to be involved in determining the specificity of the enzyme for NADPH compared to NADH. Finally, in preliminary inhibition studies, we have shown that triclosan, 5-ethyl-2-phenoxyphenol (EPP), and 5-chloro-2-phenoxyphenol (CPP) are all nanomolar slow-onset inhibitors of saFabI. These compounds inhibit the growth of S. aureus with MIC values of 0.03-0.06 microg/mL. Upon selection for resistance, three novel safabI mutations, A95V, I193S, and F204S, were identified. Strains containing these mutations had MIC values approximately 100-fold larger than that of the wild-type strain, whereas the purified mutant enzymes had K i values 5-3000-fold larger than that of wild-type saFabI. The increase in both MIC and K i values caused by the mutations supports the proposal that saFabI is the intracellular target for the diphenyl ether-based inhibitors.


Assuntos
Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Inibidores Enzimáticos/farmacologia , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Catálise , Sequência Conservada , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/isolamento & purificação , Ativação Enzimática/efeitos dos fármacos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutação/genética , Éteres Fenílicos/farmacologia , Alinhamento de Sequência , Staphylococcus aureus/genética , Especificidade por Substrato
15.
J Am Chem Soc ; 129(20): 6425-31, 2007 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-17472376

RESUMO

InhA, the enoyl reductase from Mycobacterium tuberculosis, catalyzes the NADH-dependent reduction of trans-2-enoyl-ACPs. In the present work, Raman spectroscopy has been used to identify catalytically relevant changes in the conformation of the nicotinamide ring that occur when NADH binds to InhA. For 4(S)-NADD, there is an 11 cm-1 decrease in the wavenumber of the C4-D stretching band (nuC-D) and a 50% decrease in the width of this band upon binding to InhA. While a similar reduction in line width is observed for the corresponding band arising from 4(R)-NADD, nuC-D for this isomer increases 34 cm-1 upon binding to InhA. These changes in nuC-D indicate that the nicotinamide ring adopts a bound conformation in which the 4(S)C-D bond is in a pseudoaxial orientation. Mutagenesis of F149, a conserved active site residue close to the cofactor, demonstrates that this enzyme-induced modulation in cofactor structure is directly linked to catalysis. In contrast to the wild-type enzyme, Raman spectra of NADD bound to F149A InhA resemble those of NADD in solution. Consequently, F149A is no longer able to optimally position the cofactor for hydride transfer, which correlates with the 30-fold decrease in kcat and 2-fold increase in D(V/KNADH) caused by this mutation. These studies thus substantiate the proposal that hydride transfer is promoted by pseudoaxial positioning of the NADH pro-4S bond, and indicate that catalysis of substrate reduction by InhA results, in part, from correct orientation of the cofactor in the ground state.


Assuntos
Mycobacterium tuberculosis/enzimologia , NAD/química , NAD/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Catálise , Cinética , Modelos Moleculares , Conformação Molecular , Oxirredutases/genética , Fenilalanina/genética , Fenilalanina/metabolismo , Análise Espectral Raman , Vibração
16.
J Biol Chem ; 281(51): 39285-39293, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17012233

RESUMO

Acyl carrier proteins play a central role in metabolism by transporting substrates in a wide variety of pathways including the biosynthesis of fatty acids and polyketides. However, despite their importance, there is a paucity of direct structural information concerning the interaction of ACPs with enzymes in these pathways. Here we report the structure of an acyl-ACP substrate bound to the Escherichia coli fatty acid biosynthesis enoyl reductase enzyme (FabI), based on a combination of x-ray crystallography and molecular dynamics simulation. The structural data are in agreement with kinetic studies on wild-type and mutant FabIs, and reveal that the complex is primarily stabilized by interactions between acidic residues in the ACP helix alpha2 and a patch of basic residues adjacent to the FabI substrate-binding loop. Unexpectedly, the acyl-pantetheine thioester carbonyl is not hydrogen-bonded to Tyr(156), a conserved component of the short chain alcohol dehydrogenase/reductase superfamily active site triad. FabI is a proven target for drug discovery and the present structure provides insight into the molecular determinants that regulate the interaction of ACPs with target proteins.


Assuntos
Proteína de Transporte de Acila/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiologia , Escherichia coli/enzimologia , Proteína de Transporte de Acila/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II , Ligação de Hidrogênio , Cinética , Modelos Químicos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato , Tirosina/química
17.
ACS Chem Biol ; 1(1): 43-53, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-17163639

RESUMO

Novel chemotherapeutics for treating multidrug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) are required to combat the spread of tuberculosis, a disease that kills more than 2 million people annually. Using structure-based drug design, we have developed a series of alkyl diphenyl ethers that are uncompetitive inhibitors of InhA, the enoyl reductase enzyme in the MTB fatty acid biosynthesis pathway. The most potent compound has a Ki' value of 1 nM for InhA and MIC99 values of 2-3 microg mL(-1) (6-10 microM) for both drug-sensitive and drug-resistant strains of MTB. Overexpression of InhA in MTB results in a 9-12-fold increase in MIC99, consistent with the belief that these compounds target InhA within the cell. In addition, transcriptional response studies reveal that the alkyl diphenyl ethers fail to upregulate a putative efflux pump and aromatic dioxygenase, detoxification mechanisms that are triggered by the lead compound triclosan. These diphenyl ether-based InhA inhibitors do not require activation by the mycobacterial KatG enzyme, thereby circumventing the normal mechanism of resistance to the front line drug isoniazid (INH) and thus accounting for their activity against INH-resistant strains of MTB.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Desenho de Fármacos , Ácidos Graxos Dessaturases/antagonistas & inibidores , Humanos , Cinética , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA