Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(52): e2212207119, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36538482

RESUMO

The 99-residue C-terminal domain of amyloid precursor protein (APP-C99), precursor to amyloid beta (Aß), is a transmembrane (TM) protein containing intrinsically disordered N- and C-terminal extramembrane domains. Using molecular dynamics (MD) simulations, we show that the structural ensemble of the C99 monomer is best described in terms of thousands of states. The C99 monomer has a propensity to form ß-strand in the C-terminal extramembrane domain, which explains the slow spin relaxation times observed in paramagnetic probe NMR experiments. Surprisingly, homodimerization of C99 not only narrows the conformational ensemble from thousands to a few states through the formation of metastable ß-strands in extramembrane domains but also stabilizes extramembrane α-helices. The extramembrane domain structure is observed to dramatically impact the homodimerization motif, resulting in the modification of TM domain conformations. Our study provides an atomic-level structural basis for communication between the extramembrane domains of the C99 protein and TM homodimer formation. This finding could serve as a general model for understanding the influence of disordered extramembrane domains on TM protein structure.


Assuntos
Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Precursor de Proteína beta-Amiloide/metabolismo , Dimerização , Peptídeos beta-Amiloides/metabolismo , Conformação Proteica em Folha beta , Domínios Proteicos , Secretases da Proteína Precursora do Amiloide/metabolismo
2.
J Biol Chem ; 299(10): 105194, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633332

RESUMO

Complex glycans serve essential functions in all living systems. Many of these intricate and byzantine biomolecules are assembled employing biosynthetic pathways wherein the constituent enzymes are membrane-associated. A signature feature of the stepwise assembly processes is the essentiality of unusual linear long-chain polyprenol phosphate-linked substrates of specific isoprene unit geometry, such as undecaprenol phosphate (UndP) in bacteria. How these enzymes and substrates interact within a lipid bilayer needs further investigation. Here, we focus on a small enzyme, PglC from Campylobacter, structurally characterized for the first time in 2018 as a detergent-solubilized construct. PglC is a monotopic phosphoglycosyl transferase that embodies the functional core structure of the entire enzyme superfamily and catalyzes the first membrane-committed step in a glycoprotein assembly pathway. The size of the enzyme is significant as it enables high-level computation and relatively facile, for a membrane protein, experimental analysis. Our ensemble computational and experimental results provided a high-level view of the membrane-embedded PglC/UndP complex. The findings suggested that it is advantageous for the polyprenol phosphate to adopt a conformation in the same leaflet where the monotopic membrane protein resides as opposed to additionally disrupting the opposing leaflet of the bilayer. Further, the analysis showed that electrostatic steering acts as a major driving force contributing to the recognition and binding of both UndP and the soluble nucleotide sugar substrate. Iterative computational and experimental mutagenesis support a specific interaction of UndP with phosphoglycosyl transferase cationic residues and suggest a role for critical conformational transitions in substrate binding and specificity.


Assuntos
Membrana Celular , Poliprenois , Transferases , Ligantes , Proteínas de Membrana , Fosfatos , Poliprenois/metabolismo , Transferases/química , Fosfatos de Poli-Isoprenil/química , Membrana Celular/química , Bactérias/química , Bactérias/citologia
3.
Biopolymers ; 115(2): e23558, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37399327

RESUMO

The well-known phenomenon of phase separation in synthetic polymers and proteins has become a major topic in biophysics because it has been invoked as a mechanism of compartment formation in cells, without the need for membranes. Most of the coacervates (or condensates) are composed of Intrinsically Disordered Proteins (IDPs) or regions that are structureless, often in interaction with RNA and DNA. One of the more intriguing IDPs is the 526-residue RNA-binding protein, Fused in Sarcoma (FUS), whose monomer conformations and condensates exhibit unusual behavior that are sensitive to solution conditions. By focussing principally on the N-terminus low-complexity domain (FUS-LC comprising residues 1-214) and other truncations, we rationalize the findings of solid-state NMR experiments, which show that FUS-LC adopts a non-polymorphic fibril structure (core-1) involving residues 39-95, flanked by fuzzy coats on both the N- and C-terminal ends. An alternate structure (core-2), whose free energy is comparable to core-1, emerges only in the truncated construct (residues 110-214). Both core-1 and core-2 fibrils are stabilized by a Tyrosine ladder as well as hydrophilic interactions. The morphologies (gels, fibrils, and glass-like) adopted by FUS seem to vary greatly, depending on the experimental conditions. The effect of phosphorylation is site-specific. Simulations show that phosphorylation of residues within the fibril has a greater destabilization effect than residues that are outside the fibril region, which accords well with experiments. Many of the peculiarities associated with FUS may also be shared by other IDPs, such as TDP43 and hnRNPA2. We outline a number of problems for which there is no clear molecular explanation.


Assuntos
Proteínas Intrinsicamente Desordenadas , Sarcoma , Humanos , Domínios Proteicos , Espectroscopia de Ressonância Magnética , Conformação Proteica , Fosforilação , Proteínas Intrinsicamente Desordenadas/química , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389679

RESUMO

Lipid-coated noble metal nanoparticles (L-NPs) combine the biomimetic surface properties of a self-assembled lipid membrane with the plasmonic properties of a nanoparticle (NP) core. In this work, we investigate derivatives of cholesterol, which can be found in high concentrations in biological membranes, and other terpenoids, as tunable, synthetic platforms to functionalize L-NPs. Side chains of different length and polarity, with a terminal alkyne group as Raman label, are introduced into cholesterol and betulin frameworks. The synthesized tags are shown to coexist in two conformations in the lipid layer of the L-NPs, identified as "head-out" and "head-in" orientations, whose relative ratio is determined by their interactions with the lipid-water hydrogen-bonding network. The orientational dimorphism of the tags introduces orthogonal functionalities into the NP surface for selective targeting and plasmon-enhanced Raman sensing, which is utilized for the identification and Raman imaging of epidermal growth factor receptor-overexpressing cancer cells.


Assuntos
Lipídeos/química , Lipossomos/química , Nanopartículas Metálicas/química , Nanopartículas/química , Química Click , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular
5.
Biophys J ; 122(11): 1914-1925, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35962549

RESUMO

An approach for the efficient simulation of phase-separated lipid bilayers, for use in the calculation of equilibrium free energies of partitioning between lipid domains, is proposed. The methodology exploits restraint potentials and rectangular aspect ratios that enforce lipid phase separation, allowing for the simulation of smaller systems that approximately reproduce bulk behavior. The utility of this approach is demonstrated through the calculation of potentials of mean force for the translation of a transmembrane protein between lipid domains. The impact of the imposed restraints on lipid tail ordering and lipid packing are explored, providing insight into how restraints can best be employed to compute accurate free-energy surfaces. This approach should be useful in the accurate calculation of equilibrium partition coefficients for transmembrane protein partitioning in heterogeneous membranes, providing insight into the thermodynamic driving forces that control this fundamental biophysical phenomenon.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Bicamadas Lipídicas/metabolismo , Termodinâmica , Simulação por Computador , Proteínas de Membrana/metabolismo , Membranas/metabolismo
6.
Biophys J ; 122(19): 3999-4010, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37658602

RESUMO

The ß-secretase, BACE1, and the α-secretase, ADAM10, are known to competitively cleave amyloid precursor protein (APP) in the amyloid cascades of Alzheimer's disease. Cleavage of APP by BACE1 produces a 99-residue C-terminal peptide (APP-C99) that is subsequently cleaved by γ-secretase to form amyloid-ß (Aß) protein, whereas cleavage of APP by ADAM10 is nonamyloidogenic. It has been speculated that ADAM10/APP and BACE1/APP interactions are regulated by colocalization within and outside of liquid-ordered membrane domains; however, the mechanism of this regulation and the character of the proteins' transmembrane domains are not well understood. In this work, we have developed and characterized minimal congener sequences for the transmembrane domains of ADAM10 and BACE1 using a multiscale modeling approach combining both temperature replica exchange and conventional molecular dynamics simulations based on the coarse-grained Martini2.2 and all-atom CHARMM36 force fields. Our results show that membrane composition impacts the character of the transmembrane domains of BACE1 and ADAM10, adding credence to the speculation that membrane domains are involved in the etiology of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Proteínas de Membrana/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteína ADAM10/metabolismo , Peptídeos beta-Amiloides/metabolismo
7.
Chem Rev ; 121(4): 2545-2647, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33543942

RESUMO

Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aß, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.


Assuntos
Amiloide/química , Amiloide/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Modelos Moleculares , Doenças Neurodegenerativas/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregação Patológica de Proteínas , Deficiências na Proteostase/metabolismo , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
8.
J Chem Phys ; 159(13)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37782254

RESUMO

The equilibrium association of transmembrane proteins plays a fundamental role in membrane protein function and cellular signaling. While the study of the equilibrium binding of single pass transmembrane proteins has received significant attention in experiment and simulation, the accurate assessment of equilibrium association constants remains a challenge to experiment and simulation. In experiment, there remain wide variations in association constants derived from experimental studies of the most widely studied transmembrane proteins. In simulation, state-of-the art methods have failed to adequately sample the thermodynamically relevant structures of the dimer state ensembles using coarse-grained models. In addition, all-atom force fields often fail to accurately assess the relative free energies of the dimer and monomer states. Given the importance of this fundamental biophysical process, it is essential to address these shortcomings. In this work, we establish an effective computational protocol for the calculation of equilibrium association constants for transmembrane homodimer formation. A set of transmembrane protein homodimers, used in the parameterization of the MARTINI v3 force field, are simulated using metadynamics, based on three collective variables. The method is found to be accurate and computationally efficient, providing a standard to be used in the future simulation studies using coarse-grained or all-atom models.


Assuntos
Proteínas de Membrana , Polímeros , Simulação por Computador
9.
Proc Natl Acad Sci U S A ; 117(33): 19926-19937, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32732434

RESUMO

The early events in the aggregation of the intrinsically disordered peptide, amyloid-ß (Aß), involve transitions from the disordered free energy ground state to assembly-competent states. Are the fingerprints of order found in the amyloid fibrils encoded in the conformations that the monomers access at equilibrium? If so, could the enhanced aggregation rate of Aß42 compared to Aß40 be rationalized from the sparsely populated high free energy states of the monomers? Here, we answer these questions in the affirmative using coarse-grained simulations of the self-organized polymer-intrinsically disordered protein (SOP-IDP) model of Aß40 and Aß42. Although both the peptides have practically identical ensemble-averaged properties, characteristic of random coils (RCs), the conformational ensembles of the two monomers exhibit sequence-specific heterogeneity. Hierarchical clustering of conformations reveals that both the peptides populate high free energy aggregation-prone ([Formula: see text]) states, which resemble the monomers in the fibril structure. The free energy gap between the ground (RC) and the [Formula: see text] states of Aß42 peptide is smaller than that for Aß40. By relating the populations of excited states of the two peptides to the fibril formation time scales using an empirical formula, we explain nearly quantitatively the faster aggregation rate of Aß42 relative to Aß40. The [Formula: see text] concept accounts for fibril polymorphs, leading to the prediction that the less stable [Formula: see text] state of Aß42, encoding for the U-bend fibril, should form earlier than the structure with the S-bend topology, which is in accord with Ostwald's rule rationalizing crystal polymorph formation.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Entropia , Humanos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos
10.
Chem Rev ; 120(15): 7152-7218, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32598850

RESUMO

Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.


Assuntos
Modelos Químicos , Proteínas/química , Análise Espectral/métodos , Humanos , Análise Espectral Raman , Eletricidade Estática , Vibração
11.
Proc Natl Acad Sci U S A ; 115(39): E9041-E9050, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30190430

RESUMO

Gold nanoparticles (NPs) wrapped in a membrane can be utilized as artificial virus nanoparticles (AVNs) that combine the large nonblinking or bleaching optical cross-section of the NP core with the biological surface properties and functionalities provided by a self-assembled lipid membrane. We used these hybrid nanomaterials to test the roles of monosialodihexosylganglioside (GM3) and phosphatidylserine (PS) for a lipid-mediated targeting of virus-containing compartments (VCCs) in macrophages. GM3-presenting AVNs bind to CD169 (Siglec-1)-expressing macrophages, but inclusion of PS in the GM3-containing AVN membrane decreases binding. Molecular dynamics simulations of the AVN membrane and experimental binding studies of CD169 to GM3-presenting AVNs reveal Na+-mediated interactions between GM3 and PS as a potential cause of the antagonistic action on binding by the two negatively charged lipids. GM3-functionalized AVNs with no or low PS content localize to tetherin+, CD9+ VCC in a membrane composition-depending fashion, but increasing amounts of PS in the AVN membrane redirect the NP to lysosomal compartments. Interestingly, this compartmentalization is highly GM3 specific. Even AVNs presenting the related monosialotetrahexosylganglioside (GM1) fail to achieve an accumulation in VCC. AVN localization to VCC was observed for AVN with gold NP core but not for liposomes, suggesting that NP sequestration into VCC has additional requirements beyond ligand (GM3)-receptor (CD169) recognition that are related to the physical properties of the NP core. Our results confirm AVN as a scalable platform for elucidating the mechanisms of lipid-mediated viral entry pathways and for selective intracellular targeting.


Assuntos
Gangliosídeo G(M3)/metabolismo , Ouro , Macrófagos/metabolismo , Membranas Artificiais , Nanopartículas Metálicas , Fosfatidilserinas/metabolismo , Internalização do Vírus , Vírus/metabolismo , Humanos , Lisossomos/metabolismo , Lisossomos/virologia , Macrófagos/virologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Células THP-1 , Tetraspanina 29/metabolismo
12.
J Am Chem Soc ; 142(29): 12715-12729, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32575981

RESUMO

How the distinctive lipid composition of mammalian plasma membranes impacts membrane protein structure is largely unexplored, partly because of the dearth of isotropic model membrane systems that contain abundant sphingolipids and cholesterol. This gap is addressed by showing that sphingomyelin and cholesterol-rich (SCOR) lipid mixtures with phosphatidylcholine can be cosolubilized by n-dodecyl-ß-melibioside to form bicelles. Small-angle X-ray and neutron scattering, as well as cryo-electron microscopy, demonstrate that these assemblies are stable over a wide range of conditions and exhibit the bilayered-disc morphology of ideal bicelles even at low lipid-to-detergent mole ratios. SCOR bicelles are shown to be compatible with a wide array of experimental techniques, as applied to the transmembrane human amyloid precursor C99 protein in this medium. These studies reveal an equilibrium between low-order oligomer structures that differ significantly from previous experimental structures of C99, providing an example of how ordered membranes alter membrane protein structure.


Assuntos
Colesterol/química , Proteínas de Membrana/química , Esfingolipídeos/química , Microscopia Crioeletrônica , Humanos
13.
Chem Soc Rev ; 48(8): 2338-2365, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30742140

RESUMO

Sulphated polysaccharides play important roles in a number of physiological and patho-physiological processes including the coagulation cascade, viral transmission, and antioxidation. In nature, sulphated polysaccharides are highly diverse, possessing variations in the carbohydrate backbone, location of the sulphate group(s), and degree of sulphation. These compositional attributes lead to varied sulphated polymers with different negative charge densities and resultant structure-property-activity relationships. Sulphating naturally occurring polysaccharides and their synthetic analogs is challenging, and traditionally requires harsh conditions and long reaction times, often causing non-selective sulphation at different and/or multiple hydroxyl positions. In this Review, we begin with a discussion of both established and novel methods and reagents for sulphation of these polymers, along with the advantages and disadvantages of these various approaches. Next, we describe characterization methods to confirm sulphation. Finally, we provide examples of synthetically sulphated natural polysaccharides and sulphated synthetic polysaccharides, and discuss the utility of these novel polymers in various biomedical applications. This review provides a comprehensive analysis of synthetic sulphated polysaccharides, their current uses, and highlights biomedical opportunities.

14.
J Comput Chem ; 40(2): 475-481, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30414195

RESUMO

We propose a molecular simulation method using genetic algorithm (GA) for biomolecular systems to obtain ensemble averages efficiently. In this method, we incorporate the genetic crossover, which is one of the operations of GA, to any simulation method such as conventional molecular dynamics (MD), Monte Carlo, and other simulation methods. The genetic crossover proposes candidate conformations by exchanging parts of conformations of a target molecule between a pair of conformations during the simulation. If the candidate conformations are accepted, the simulation resumes from the accepted ones. While conventional simulations are based on local update of conformations, the genetic crossover introduces global update of conformations. As an example of the present approach, we incorporated genetic crossover to MD simulations. We tested the validity of the method by calculating ensemble averages and the sampling efficiency by using two kinds of peptides, ALA3 and (AAQAA)3 . The results show that for ALA3 system, the distribution probabilities of backbone dihedral angles are in good agreement with those of the conventional MD and replica-exchange MD simulations. In the case of (AAQAA)3 system, our method showed lower structural correlation of α-helix structures than the other two methods and more flexibility in the backbone ψ angles than the conventional MD simulation. These results suggest that our method gives more efficient conformational sampling than conventional simulation methods based on local update of conformations. © 2018 Wiley Periodicals, Inc.


Assuntos
Algoritmos , Simulação de Dinâmica Molecular , Peptídeos/química , Conformação Proteica
15.
J Chem Phys ; 150(20): 204702, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31153187

RESUMO

The separation of lipid mixtures into thermodynamically stable phase-separated domains is dependent on lipid composition, temperature, and system size. Using molecular dynamics simulations, the line tension between thermodynamically stable lipid domains formed from ternary mixtures of di-C16:0 PC:di-C18:2 PC:cholesterol at 40:40:20 mol. % ratio was investigated via two theoretical approaches. The line tension was found to be 3.1 ± 0.2 pN by capillary wave theory and 4.7 ± 3.7 pN by pressure tensor anisotropy approaches for coarse-grained models based on the Martini force field. Using an all-atom model of the lipid membrane based on the CHARMM36 force field, the line tension was found to be 3.6 ± 0.9 pN using capillary wave theory and 1.8 ± 2.2 pN using pressure anisotropy approaches. The discrepancy between estimates of the line tension based on capillary wave theory and pressure tensor anisotropy methods is discussed. Inclusion of protein in Martini membrane lipid mixtures was found to reduce the line tension by 25%-35% as calculated by the capillary wave theory approach. To further understand and predict the behavior of proteins in phase-separated membranes, we have formulated an analytical Flory-Huggins model and parameterized it against the simulation results. Taken together these results suggest a general role for proteins in reducing the thermodynamic cost associated with domain formation in lipid mixtures and quantifies the thermodynamic driving force promoting the association of proteins to domain interfaces.

16.
Proc Natl Acad Sci U S A ; 113(36): E5281-7, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27559086

RESUMO

Cleavage of the amyloid precursor protein (APP) by γ-secretase is a crucial first step in the evolution of Alzheimer's disease. To discover the cleavage mechanism, it is urgent to predict the structures of APP monomers and dimers in varying membrane environments. We determined the structures of the C9923-55 monomer and homodimer as a function of membrane lipid composition using a multiscale simulation approach that blends atomistic and coarse-grained models. We demonstrate that the C9923-55 homodimer structures form a heterogeneous ensemble with multiple conformational states, each stabilized by characteristic interpeptide interactions. The relative probabilities of each conformational state are sensitive to the membrane environment, leading to substantial variation in homodimer peptide structure as a function of membrane lipid composition or the presence of an anionic lipid environment. In contrast, the helicity of the transmembrane domain of monomeric C991-55 is relatively insensitive to the membrane lipid composition, in agreement with experimental observations. The dimer structures of human EphA2 receptor depend on the lipid environment, which we show is linked to the location of the structural motifs in the dimer interface, thereby establishing that both sequence and membrane composition modulate the complete energy landscape of membrane-bound proteins. As a by-product of our work, we explain the discrepancy in structures predicted for C99 congener homodimers in membrane and micelle environments. Our study provides insight into the observed dependence of C99 protein cleavage by γ-secretase, critical to the formation of amyloid-ß protein, on membrane thickness and lipid composition.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/química , Lipídeos de Membrana/química , Receptor EphA2/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Dimerização , Humanos , Lipídeos de Membrana/genética , Fragmentos de Peptídeos/química , Conformação Proteica , Domínios Proteicos/genética , Estabilidade Proteica , Proteólise , Receptor EphA2/química
17.
Biophys J ; 115(11): 2167-2178, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30414630

RESUMO

Cholesterol is essential to the formation of phase-separated lipid domains in membranes. Lipid domains can exist in different thermodynamic phases depending on the molecular composition and play significant roles in determining structure and function of membrane proteins. We investigate the role of cholesterol in the structure and dynamics of ternary lipid mixtures displaying phase separation using molecular dynamics simulations, employing a physiologically relevant span of cholesterol concentration. We find that cholesterol can induce formation of three regimes of phase behavior: 1) miscible liquid-disordered bulk, 2) phase-separated, domain-registered coexistence of liquid-disordered and liquid-ordered domains, and 3) phase-separated, domain-antiregistered coexistence of liquid-disordered and newly identified nanoscopic gel domains composed of cholesterol threads we name "cholesterolic gel" domains. These findings are validated and discussed in the context of current experimental knowledge, models of cholesterol spatial distributions, and models of ternary lipid-mixture phase separation.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Termodinâmica
18.
Biochemistry ; 57(39): 5738-5747, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30184436

RESUMO

Hereditary apolipoprotein A-I (apoA-I) amyloidosis is a life-threatening incurable genetic disorder whose molecular underpinnings are unclear. In this disease, variant apoA-I, the major structural and functional protein of high-density lipoprotein, is released in a free form, undergoes an α-helix to intermolecular cross-ß-sheet conversion along with a proteolytic cleavage, and is deposited as amyloid fibrils in various organs, which can cause organ damage and death. Glu34Lys is the only known charge inversion mutation in apoA-I that causes human amyloidosis. To elucidate the structural underpinnings of the amyloidogenic behavior of Glu34Lys apoA-I, we generated its recombinant globular N-terminal domain (residues 1-184) and compared the conformation and dynamics of its lipid-free form with those of two other naturally occurring apoA-I variants, Phe71Tyr (amyloidogenic) and Leu159Arg (non-amyloidogenic). All variants showed reduced structural stability and altered aromatic residue packing. The greatest decrease in stability was observed in the non-amyloidogenic variant, suggesting that amyloid formation is driven by local structural perturbations at sensitive sites. Molecular dynamics simulations revealed local helical unfolding and suggested that transient opening of the Trp72 side chain induced mutation-dependent structural perturbations in a sensitive region, including the major amyloid hot spot residues Leu14-Leu22. We posit that a shift from the "closed" to the "open" orientation of the Trp72 side chain modulates structural protection of amyloid hot spots, suggesting a previously unknown early step in the protein misfolding pathway.


Assuntos
Proteínas Amiloidogênicas/genética , Amiloidose Familiar/genética , Apolipoproteína A-I/genética , Proteínas Amiloidogênicas/química , Apolipoproteína A-I/química , Humanos , Lisina/química , Simulação de Dinâmica Molecular , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Conformação Proteica , Domínios Proteicos/genética , Estabilidade Proteica , Desdobramento de Proteína , Triptofano/química
19.
J Biol Chem ; 292(41): 16858-16871, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28842494

RESUMO

Oligomeric forms of the amyloid-ß (Aß) peptide are thought to represent the primary synaptotoxic species underlying the neurodegenerative changes seen in Alzheimer's disease. It has been proposed that the cellular prion protein (PrPC) functions as a cell-surface receptor, which binds to Aß oligomers and transduces their toxic effects. However, the molecular details of the PrPC-Aß interaction remain uncertain. Here, we investigated the effect of PrPC on polymerization of Aß under rigorously controlled conditions in which Aß converts from a monomeric to a fibrillar state via a series of kinetically defined steps. We demonstrated that PrPC specifically inhibited elongation of Aß fibrils, most likely by binding to the ends of growing fibrils. Surprisingly, this inhibitory effect required the globular C-terminal domain of PrPC, which has not been previously implicated in interactions with Aß. Our results suggest that PrPC recognizes structural features common to both Aß oligomers and fibril ends and that this interaction could contribute to the neurotoxic effect of Aß aggregates. Additionally, our results identify the C terminus of PrPC as a new and potentially more druggable molecular target for treating Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Proteínas PrPC/química , Agregação Patológica de Proteínas , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Camundongos , Fragmentos de Peptídeos/metabolismo , Proteínas PrPC/metabolismo , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA