Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Microb Ecol ; 85(2): 659-668, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35102425

RESUMO

Variation in microbial use of soil carbon compounds is a major driver of biogeochemical processes and microbial community composition. Available carbon substrates in soil include both low molecular weight-dissolved organic carbon (LMW-DOC) and volatile organic compounds (VOCs). To compare the effects of LMW-DOC and VOCs on soil chemistry and microbial communities under different moisture regimes, we performed a microcosm experiment with five levels of soil water content (ranging from 25 to 70% water-holding capacity) and five levels of carbon amendment: a no carbon control, two dissolved compounds (glucose and oxalate), and two volatile compounds (methanol and α-pinene). Microbial activity was measured throughout as soil respiration; at the end of the experiment, we measured extractable soil organic carbon and total extractable nitrogen and characterized prokaryotic communities using amplicon sequencing. All C amendments increased microbial activity, and all except oxalate decreased total extractable nitrogen. Likewise, individual phyla responded to specific C amendments-e.g., Proteobacteria increased under addition of glucose, and both VOCs. Further, we observed an interaction between moisture and C amendment, where both VOC treatments had higher microbial activity than LMW-DOC treatments and controls at low moisture. Across moisture and C treatments, we identified that Chloroflexi, Nitrospirae, Proteobacteria, and Verrucomicrobia were strong predictors of microbial activity, while Actinobacteria, Bacteroidetes, and Thaumarcheota strongly predicted soil extractable nitrogen. These results indicate that the type of labile C source available to soil prokaryotes can influence both microbial diversity and ecosystem function and that VOCs may drive microbial functions and composition under low moisture conditions.


Assuntos
Microbiota , Solo , Solo/química , Matéria Orgânica Dissolvida , Nitrogênio/análise , Carbono , Microbiologia do Solo , Bactérias , Proteobactérias , Água
2.
Ecol Lett ; 22(12): 2067-2076, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31595680

RESUMO

Microbial communities drive soil ecosystem function but are also susceptible to environmental disturbances. We investigated whether exposure to manure sourced from cattle either administered or not administered antibiotics affected microbially mediated terrestrial ecosystem function. We quantified changes in microbial community composition via amplicon sequencing, and terrestrial elemental cycling via a stable isotope pulse-chase. Exposure to manure from antibiotic-treated cattle caused: (i) changes in microbial community structure; and (ii) alterations in elemental cycling throughout the terrestrial system. This exposure caused changes in fungal : bacterial ratios, as well as changes in bacterial community structure. Additionally, exposure to manure from cattle treated with pirlimycin resulted in an approximate two-fold increase in ecosystem respiration of recently fixed-carbon, and a greater proportion of recently added nitrogen in plant and soil pools compared to the control manure. Manure from antibiotic-treated cattle therefore affects terrestrial ecosystem function via the soil microbiome, causing decreased ecosystem carbon use efficiency, and altered nitrogen cycling.


Assuntos
Ecossistema , Esterco , Animais , Antibacterianos , Carbono , Bovinos , Gado , Nitrogênio , Solo , Microbiologia do Solo
3.
Glob Chang Biol ; 24(7): 2997-3009, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29377461

RESUMO

Despite the large contribution of rangeland and pasture to global soil organic carbon (SOC) stocks, there is considerable uncertainty about the impact of large herbivore grazing on SOC, especially for understudied subtropical grazing lands. It is well known that root system inputs are the source of most grassland SOC, but the impact of grazing on partitioning of carbon allocation to root tissue production compared to fine root exudation is unclear. Given that different forms of root C have differing implications for SOC synthesis and decomposition, this represents a significant gap in knowledge. Root exudates should contribute to SOC primarily after microbial assimilation, and thus promote microbial contributions to SOC based on stabilization of microbial necromass, whereas root litter deposition contributes directly as plant-derived SOC following microbial decomposition. Here, we used in situ isotope pulse-chase methodology paired with plant and soil sampling to link plant carbon allocation patterns with SOC pools in replicated long-term grazing exclosures in subtropical pasture in Florida, USA. We quantified allocation of carbon to root tissue and measured root exudation across grazed and ungrazed plots and quantified lignin phenols to assess the relative contribution of microbial vs. plant products to total SOC. We found that grazing exclusion was associated with dramatically less overall belowground allocation, with lower root biomass, fine root exudates, and microbial biomass. Concurrently, grazed pasture contained greater total SOC, and a larger fraction of SOC that originated from plant tissue deposition, suggesting that higher root litter deposition under grazing promotes greater SOC. We conclude that grazing effects on SOC depend on root system biomass, a pattern that may generalize to other C4-dominated grasslands, especially in the subtropics. Improved understanding of ecological factors underlying root system biomass may be the key to forecasting SOC and optimizing grazing management to enhance SOC accumulation.


Assuntos
Biomassa , Carbono/química , Comportamento Alimentar , Pradaria , Solo/química , Animais , Florida , Herbivoria , Nitrogênio/química
4.
Environ Sci Technol ; 52(9): 5358-5366, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29634901

RESUMO

Bioretention cells (BRCs) are effective tools for treating urban stormwater, but nitrogen removal by these systems is highly variable. Improvements in nitrogen removal are hampered by a lack of data directly quantifying the abundance or activity of denitrifying microorganisms in BRCs and how they are controlled by original BRC design characteristics. We analyzed denitrifiers in twenty-three BRCs of different designs across three mid-Atlantic states (MD, VA, and NC) by quantifying two bacterial denitrification genes ( nirK and nosZ) and potential enzymatic denitrification rates within the soil medium. Overall, we found that BRC design factors, rather than local environmental variables, had the greatest effects on variation in denitrifier abundance and activity. Specifically, denitrifying populations and denitrification potential increased with organic carbon and inorganic nitrogen concentrations in the soil media and decreased in BRCs planted with grass compared to other types of vegetation. Furthermore, the top layers of BRCs consistently contained greater concentrations and activity of denitrifying bacteria than bottom layers, despite longer periods of saturation and the presence of permanently saturated zones designed to promote denitrification at lower depths. These findings suggest that there is still considerable potential for design improvements when constructing BRCs that could increase denitrification and mitigate nitrogen export to receiving waters.


Assuntos
Desnitrificação , Microbiologia do Solo , Bactérias , Nitrogênio , Solo
5.
Proc Biol Sci ; 284(1851)2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28356447

RESUMO

Intensifying livestock production to meet the demands of a growing global population coincides with increases in both the administration of veterinary antibiotics and manure inputs to soils. These trends have the potential to increase antibiotic resistance in soil microbial communities. The effect of maintaining increased antibiotic resistance on soil microbial communities and the ecosystem processes they regulate is unknown. We compare soil microbial communities from paired reference and dairy manure-exposed sites across the USA. Given that manure exposure has been shown to elicit increased antibiotic resistance in soil microbial communities, we expect that manure-exposed sites will exhibit (i) compositionally different soil microbial communities, with shifts toward taxa known to exhibit resistance; (ii) greater abundance of antibiotic resistance genes; and (iii) corresponding maintenance of antibiotic resistance would lead to decreased microbial efficiency. We found that bacterial and fungal communities differed between reference and manure-exposed sites. Additionally, the ß-lactam resistance gene ampC was 5.2-fold greater under manure exposure, potentially due to the use of cephalosporin antibiotics in dairy herds. Finally, ampC abundance was positively correlated with indicators of microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under manure exposure. These findings demonstrate that the maintenance of antibiotic resistance associated with manure inputs alters soil microbial communities and ecosystem function.


Assuntos
Resistência Microbiana a Medicamentos , Esterco , Microbiologia do Solo , Animais , Antibacterianos , Bactérias , Bovinos , Fungos , Solo
6.
Proc Natl Acad Sci U S A ; 110(27): 11035-8, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23776213

RESUMO

Trophic cascades--the indirect effects of carnivores on plants mediated by herbivores--are common across ecosystems, but their influence on biogeochemical cycles, particularly the terrestrial carbon cycle, are largely unexplored. Here, using a (13)C pulse-chase experiment, we demonstrate how trophic structure influences ecosystem carbon dynamics in a meadow system. By manipulating the presence of herbivores and predators, we show that even without an initial change in total plant or herbivore biomass, the cascading effects of predators in this system begin to affect carbon cycling through enhanced carbon fixation by plants. Prolonged cascading effects on plant biomass lead to slowing of carbon loss via ecosystem respiration and reallocation of carbon among plant aboveground and belowground tissues. Consequently, up to 1.4-fold more carbon is retained in plant biomass when carnivores are present compared with when they are absent, owing primarily to greater carbon storage in grass and belowground plant biomass driven largely by predator nonconsumptive (fear) effects on herbivores. Our data highlight the influence that the mere presence of predators, as opposed to direct consumption of herbivores, can have on carbon uptake, allocation, and retention in terrestrial ecosystems.


Assuntos
Ciclo do Carbono/fisiologia , Ecossistema , Animais , Biodiversidade , Biomassa , Isótopos de Carbono , Carnívoros/fisiologia , Cadeia Alimentar , Herbivoria/fisiologia , Modelos Biológicos , Plantas/metabolismo
7.
Ecol Appl ; 25(1): 140-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26255363

RESUMO

Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks of soil carbon. Active microbial biomass, however, is higher under switchgrass, and this microbial biomass is a dominant precursor of soil carbon formation. Future studies need to investigate soil carbon dynamics throughout the lifetime of intercropping rotations to evaluate whether increases in microbial biomass can offset initial declines in soil carbon, and hence, maintain ecosystem carbon stocks.


Assuntos
Agricultura/métodos , Biocombustíveis , Carbono/química , Panicum/fisiologia , Pinus taeda/fisiologia , Solo/química , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biomassa , Ecossistema , Microbiologia do Solo
8.
Environ Sci Pollut Res Int ; 31(18): 27259-27272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38507165

RESUMO

Growing concerns about the global antimicrobial resistance crisis require a better understanding of how antibiotic resistance persists in soil and how antibiotic exposure impacts soil microbial communities. In agroecosystems, these responses are complex because environmental factors may influence how soil microbial communities respond to manure and antibiotic exposure. The study aimed to determine how soil type and moisture alter responses of microbial communities to additions of manure from cattle treated with antibiotics. Soil microcosms were constructed using two soil types at 15, 30, or 45% moisture. Microcosms received biweekly additions of manure from cattle given cephapirin or pirlimycin, antibiotic-free manure, or no manure. While soil type and moisture had the largest effects on microbiome structure, impacts of manure treatments on community structure and individual ARG abundances were observed across varying soil conditions. Activity was also affected, as respiration increased in the cephapirin treatment but decreased with pirlimycin. Manure from cattle antibiotics also increased NH4+ and decreased NO3- availability in some scenarios, but the effects were heavily influenced by soil type and moisture. Overall, this work demonstrates that environmental conditions can alter how manure from cattle administered antibiotics impact the soil microbiome. A nuanced approach that considers environmental variability may benefit the long-term management of antibiotic resistance in soil systems.


Assuntos
Antibacterianos , Esterco , Microbiologia do Solo , Solo , Animais , Bovinos , Antibacterianos/farmacologia , Solo/química , Microbiota/efeitos dos fármacos
9.
ISME Commun ; 4(1): ycae081, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38988701

RESUMO

Not all bacteria are fast growers. In soil as in other environments, bacteria exist along a continuum-from copiotrophs that can grow rapidly under resource-rich conditions to oligotrophs that are adapted to life in the "slow lane." However, the field of microbiology is built almost exclusively on the study of copiotrophs due, in part, to the ease of studying them in vitro. To begin understanding the attributes of soil oligotrophs, we analyzed three independent datasets that represent contrasts in organic carbon availability. These datasets included 185 samples collected from soil profiles across the USA, 950 paired bulk soil and rhizosphere samples collected across Europe, and soils from a microcosm experiment where carbon availability was manipulated directly. Using a combination of marker gene sequencing and targeted genomic analyses, we identified specific oligotrophic taxa that were consistently more abundant in carbon-limited environments (subsurface, bulk, unamended soils) compared to the corresponding carbon-rich environment (surface, rhizosphere, glucose-amended soils), including members of the Dormibacterota and Chloroflexi phyla. In general, putative soil oligotrophs had smaller genomes, slower maximum potential growth rates, and were under-represented in culture collections. The genomes of oligotrophs were more likely to be enriched in pathways that allow oligotrophs to metabolize a range of energy sources and store carbon, while genes associated with energy-intensive functions like chemotaxis and motility were under-represented. However, few genomic attributes were shared, highlighting that oligotrophs likely use a range of different metabolic strategies and regulatory pathways to thrive in resource-limited soils.

10.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38648266

RESUMO

Flagellar motility is a key bacterial trait as it allows bacteria to navigate their immediate surroundings. Not all bacteria are capable of flagellar motility, and the distribution of this trait, its ecological associations, and the life history strategies of flagellated taxa remain poorly characterized. We developed and validated a genome-based approach to infer the potential for flagellar motility across 12 bacterial phyla (26 192 unique genomes). The capacity for flagellar motility was associated with a higher prevalence of genes for carbohydrate metabolism and higher maximum potential growth rates, suggesting that flagellar motility is more prevalent in environments with higher carbon availability. To test this hypothesis, we applied a method to infer the prevalence of flagellar motility in whole bacterial communities from metagenomic data and quantified the prevalence of flagellar motility across four independent field studies that each captured putative gradients in soil carbon availability (148 metagenomes). We observed a positive relationship between the prevalence of bacterial flagellar motility and soil carbon availability in all datasets. Since soil carbon availability is often correlated with other factors that could influence the prevalence of flagellar motility, we validated these observations using metagenomic data from a soil incubation experiment where carbon availability was directly manipulated with glucose amendments. This confirmed that the prevalence of bacterial flagellar motility is consistently associated with soil carbon availability over other potential confounding factors. This work highlights the value of combining predictive genomic and metagenomic approaches to expand our understanding of microbial phenotypic traits and reveal their general environmental associations.


Assuntos
Bactérias , Flagelos , Microbiologia do Solo , Flagelos/genética , Flagelos/fisiologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Metagenômica , Fenômenos Fisiológicos Bacterianos , Carbono/metabolismo , Solo/química , Metagenoma , Genoma Bacteriano
11.
Trends Ecol Evol ; 39(2): 152-164, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37816662

RESUMO

Carrion decomposition is fundamental to nutrient cycling in terrestrial ecosystems because it provides a high-quality resource to diverse organisms. A conceptual framework incorporating all phases of carrion decomposition with the full community of scavengers is needed to predict the effects of global change on core ecosystem processes. Because global change can differentially impact scavenger guilds and rates of carrion decomposition, our framework explicitly incorporates complex interactions among microbial, invertebrate, and vertebrate scavenger communities across three distinct phases of carcass decomposition. We hypothesize that carrion decomposition rates will be the most impacted when global change affects carcass discovery rates and the foraging behavior of competing scavenger guilds.


Assuntos
Ecossistema , Vertebrados , Animais , Peixes
12.
ISME Commun ; 3(1): 66, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400524

RESUMO

Ecosystem functions and services are under threat from anthropogenic global change at a planetary scale. Microorganisms are the dominant drivers of nearly all ecosystem functions and therefore ecosystem-scale responses are dependent on responses of resident microbial communities. However, the specific characteristics of microbial communities that contribute to ecosystem stability under anthropogenic stress are unknown. We evaluated bacterial drivers of ecosystem stability by generating wide experimental gradients of bacterial diversity in soils, applying stress to the soils, and measuring responses of several microbial-mediated ecosystem processes, including C and N cycling rates and soil enzyme activities. Some processes (e.g., C mineralization) exhibited positive correlations with bacterial diversity and losses of diversity resulted in reduced stability of nearly all processes. However, comprehensive evaluation of all potential bacterial drivers of the processes revealed that bacterial α diversity per se was never among the most important predictors of ecosystem functions. Instead, key predictors included total microbial biomass, 16S gene abundance, bacterial ASV membership, and abundances of specific prokaryotic taxa and functional groups (e.g., nitrifying taxa). These results suggest that bacterial α diversity may be a useful indicator of soil ecosystem function and stability, but that other characteristics of bacterial communities are stronger statistical predictors of ecosystem function and better reflect the biological mechanisms by which microbial communities influence ecosystems. Overall, our results provide insight into the role of microorganisms in supporting ecosystem function and stability by identifying specific characteristics of bacterial communities that are critical for understanding and predicting ecosystem responses to global change.

13.
FEMS Microbiol Ecol ; 99(9)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481693

RESUMO

Forest disturbance has well-characterized effects on soil microbial communities in tropical and northern hemisphere ecosystems, but little is known regarding effects of disturbance in temperate forests of the southern hemisphere. To address this question, we collected soils from intact and degraded Eucalyptus forests along an east-west transect across Tasmania, Australia, and characterized prokaryotic and fungal communities using amplicon sequencing. Forest degradation altered soil microbial community composition and function, with consistent patterns across soil horizons and regions of Tasmania. Responses of prokaryotic communities included decreased relative abundance of Acidobacteriota, nitrifying archaea, and methane-oxidizing prokaryotes in the degraded forest sites, while fungal responses included decreased relative abundance of some saprotrophic taxa (e.g. litter saprotrophs). Forest degradation also reduced network connectivity in prokaryotic communities and increased the importance of dispersal limitation in assembling both prokaryotic and fungal communities, suggesting recolonization dynamics drive microbial composition following disturbance. Further, changes in microbial functional groups reflected changes in soil chemical properties-reductions in nitrifying microorganisms corresponded with reduced NO3-N pools in the degraded soils. Overall, our results show that soil microbiota are highly responsive to forest degradation in eucalypt forests and demonstrate that microbial responses to degradation will drive changes in key forest ecosystem functions.


Assuntos
Microbiota , Micobioma , Florestas , Células Procarióticas , Solo
14.
Oecologia ; 167(3): 781-91, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21625979

RESUMO

Plant-soil interactions have been proposed as a causative mechanism explaining how invasive plant species impact ecosystem processes. We evaluate whether an invasive plant influences plant and soil-microbe acquisition of nitrogen to elucidate the mechanistic pathways by which invaders might alter N availability. Using a (15)N tracer, we quantify differences in nitrogen uptake and allocation in communities with and without Microstegium vimineum, a shade-tolerant, C(4) grass that is rapidly invading the understories of eastern US deciduous forests. We further investigate if plants or the microbial biomass exhibit preferences for certain nitrogen forms (glycine, nitrate, and ammonium) to gain insight into nitrogen partitioning in invaded communities. Understory native plants and M. vimineum took up similar amounts of added nitrogen but allocated it differently, with native plants allocating primarily to roots and M. vimineum allocating most nitrogen to shoots. Plant nitrogen uptake was higher in invaded communities due primarily to the increase in understory biomass when M. vimineum was present, but for the microbial biomass, nitrogen uptake did not vary with invasion status. This translated to a significant reduction (P < 0.001) in the ratio of microbial biomass to plant biomass nitrogen uptake, which suggests that, although the demand for nitrogen has intensified, microbes continue to be effective nitrogen competitors. The microbial biomass exhibited a strong preference for ammonium over glycine and nitrate, regardless of invasion status. By comparison, native plants showed no nitrogen preferences and M. vimineum preferred inorganic nitrogen species. We interpret our findings as evidence that invasion by M. vimineum leads to changes in the partitioning of nitrogen above and belowground in forest understories, and to decreases in the microbial biomass, but it does not affect the outcome of plant-microbe-nitrogen interactions, possibly due to functional shifts in the microbial community as a result of invasion.


Assuntos
Ecossistema , Espécies Introduzidas , Nitrogênio/metabolismo , Poaceae/fisiologia , Árvores/metabolismo , Isótopos de Nitrogênio/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Poaceae/crescimento & desenvolvimento , Dinâmica Populacional , Especificidade da Espécie , Fatores de Tempo , Árvores/crescimento & desenvolvimento
15.
Water Res ; 194: 116921, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33609910

RESUMO

The United States National Forests are mixed-use lands that support human recreation and cattle grazing. Overuse by humans or cattle, however, can lead to the fecal contamination of local waterways. Until recently, the source of these contaminants was a subject of conjecture; however, microbial source tracking tools have become widely used and are proving to be a valid methodology to identify the contamination source. This study aims to analyze and model the quantity and sources of fecal contamination in the Mink Creek watershed in southeastern Idaho. The U.S. Forest Service Caribou-Targhee National Forest (USFS) manages this watershed. Previous research has indicated that some localities within the watershed exceed US EPA standards for coliform bacteria. In 2019, water samples were collected before livestock began grazing and throughout the spring, summer, and fall after livestock grazing had ended. Fourteen sites were sampled seven times during the field season, allowing the water to be analyzed for total coliforms and E. coli bacteria. Microbial source tracking techniques using Bacteroides bacteria, which are known to live in specific digestive tracks, were used to identify the source of E. coli at each sampling location. The analysis indicated that E. coli counts exceeded state regulatory limits 35% of the time. These exceedances were associated with DNA source tracking markers for humans (58.8%), cattle (5.9%), or both cattle and humans (5.9%). Unknown sources were responsible for the Bacteroides bacteria 29.4% of the time. A statistical model was developed to estimate E. coli using the datasets of microbial source tracking measures, the presence or absence of humans, cattle, the proximity of the sampling date to a holiday, and other seasonal factors. The resulting model showed good performance indices at all the 14 sites based on a K-fold cross-validation scheme (R2 = 0.83 and NSE = 0.69). The results demonstrated that E. coli exceedances have a close association with human recreation and unknown sources and negatively influenced by dissolved oxygen.


Assuntos
Escherichia coli , Microbiologia da Água , Animais , Bovinos , Monitoramento Ambiental , Fezes , Humanos , Recreação
16.
Ecology ; 101(10): e03130, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32621285

RESUMO

Investigations into the transfer of carbon from plant litter to underlying soil horizons have primarily focused on the leaching of soluble carbon from litter belowground or the mixing of litter directly into soil. However, previous work has largely ignored the role of volatile organic compounds (VOCs) released during litter decomposition. Unlike most leaf carbon, these litter-derived VOCs are able to diffuse directly into the soil matrix. Here, we used a 99-d microcosm experiment to track VOCs produced during microbial decomposition of 13 C-labeled leaf litter into soil carbon fractions where the decomposing litters were only sharing headspace with the soil samples, thus preventing direct contact and aqueous movement of litter carbon. We also determined the effects of these litter-derived VOCs on soil microbial community structure. We demonstrated that the litter VOCs contributed to all measured soil carbon pools. Specifically, VOC-derived carbon accounted for 2.0, 0.61, 0.18, and 0.08% of carbon in the microbial biomass, dissolved organic matter, mineral-associated organic matter, and particulate organic matter pools, respectively. We also show that litter-derived VOCs can affect soil bacterial and fungal community diversity and composition. These findings highlight the importance of an underappreciated pathway where VOCs alter soil microbial communities and carbon dynamics.


Assuntos
Microbiota , Compostos Orgânicos Voláteis , Carbono , Folhas de Planta , Solo , Microbiologia do Solo
17.
Ecol Lett ; 12(11): 1238-49, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19674041

RESUMO

Although belowground ecosystems have been studied extensively and soil biota play integral roles in biogeochemical processes, surprisingly we have a limited understanding of global patterns in belowground biomass and community structure. To address this critical gap, we conducted a meta-analysis of published data (> 1300 datapoints) to compare belowground plant, microbial and faunal biomass across seven of the major biomes on Earth. We also assembled data to assess biome-level patterns in belowground microbial community composition. Our analysis suggests that variation in microbial biomass is predictable across biomes, with microbial biomass carbon representing 0.6-1.1% of soil organic carbon (r(2) = 0.91) and 1-20% of total plant biomass carbon (r(2) = 0.42). Approximately 50% of total animal biomass can be found belowground and soil faunal biomass represents < 4% of microbial biomass across all biomes. The structure of belowground microbial communities is also predictable: bacterial community composition and fungal : bacterial gene ratios can be predicted reasonably well from soil pH and soil C : N ratios respectively. Together these results identify robust patterns in the structure of belowground microbial and faunal communities at broad scales which may be explained by universal mechanisms that regulate belowground biota across biomes.


Assuntos
Ecossistema , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biomassa , Carbono/análise , Nitrogênio/análise , Desenvolvimento Vegetal , Microbiologia do Solo
18.
Ecology ; 90(2): 441-51, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19323228

RESUMO

A critical assumption underlying terrestrial ecosystem models is that soil microbial communities, when placed in a common environment, will function in an identical manner regardless of the composition of that community. Given high species diversity in microbial communities and the ability of microbes to adapt rapidly to new conditions, this assumption of functional redundancy seems plausible. We test the assumption by comparing litter decomposition rates in experimental microcosms inoculated with distinct microbial communities. We find that rates of carbon dioxide production from litter decomposition were dependent upon the microbial inoculum, with differences in the microbial community alone accounting for substantial (approximately 20%) variation in total carbon mineralized. Communities that shared a common history with a given foliar litter exhibited higher decomposition rates when compared to communities foreign to that habitat. Our results suggest that the implicit assumption in ecosystem models (i.e., microbial communities in the same environment are functionally equivalent) is incorrect. To predict accurately how biogeochemical processes will respond to global change may require consideration of the community composition and/or adaptation of microbial communities to past resource environments.


Assuntos
Ecossistema , Microbiologia do Solo , Carbono/metabolismo , Pinus/microbiologia , Poaceae/microbiologia , Rhododendron/microbiologia , Fatores de Tempo , Estados Unidos
19.
Nat Microbiol ; 9(3): 585-586, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347105

Assuntos
Ecossistema , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA