Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Aging Cell ; 22(3): e13763, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617632

RESUMO

Intronic single-nucleotide polymorphisms (SNPs) in FOXO3A are associated with human longevity. Currently, it is unclear how these SNPs alter FOXO3A functionality and human physiology, thereby influencing lifespan. Here, we identify a primate-specific FOXO3A transcriptional isoform, FOXO3A-Short (FOXO3A-S), encoding a major longevity-associated SNP, rs9400239 (C or T), within its 5' untranslated region. The FOXO3A-S mRNA is highly expressed in the skeletal muscle and has very limited expression in other tissues. We find that the rs9400239 variant influences the stability and functionality of the primarily nuclear protein(s) encoded by the FOXO3A-S mRNA. Assessment of the relationship between the FOXO3A-S polymorphism and peripheral glucose clearance during insulin infusion (Rd clamp) in a cohort of Danish twins revealed that longevity T-allele carriers have markedly faster peripheral glucose clearance rates than normal lifespan C-allele carriers. In vitro experiments in human myotube cultures utilizing overexpression of each allele showed that the C-allele represses glycolysis independently of PI3K signaling, while overexpression of the T-allele represses glycolysis only in a PI3K-inactive background. Supporting this finding inducible knockdown of the FOXO3A-S C-allele in cultured myotubes increases the glycolytic rate. We conclude that the rs9400239 polymorphism acts as a molecular switch which changes the identity of the FOXO3A-S-derived protein(s), which in turn alters the relationship between FOXO3A-S and insulin/PI3K signaling and glycolytic flux in the skeletal muscle. This critical difference endows carriers of the FOXO3A-S T-allele with consistently higher insulin-stimulated peripheral glucose clearance rates, which may contribute to their longer and healthier lifespans.


Assuntos
Glucose , Longevidade , Animais , Humanos , Proteína Forkhead Box O3/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Insulina/genética , Insulina/metabolismo , Longevidade/genética , Fosfatidilinositol 3-Quinases/genética , RNA Mensageiro
2.
J Cell Physiol ; 214(2): 474-82, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17654484

RESUMO

Integrin Cytoplasmic domain-Associated Protein-1 (ICAP-1) binds specifically to the beta1 integrin subunit cytoplasmic domain. We observed that RNAi-induced knockdown of ICAP-1 reduced migration of C2C12 myoblasts on the beta1 integrin ligand laminin and that overexpression of ICAP-1 increased this migration. In contrast, migration on the beta3 integrin ligand vitronectin was not affected. ICAP-1 knockdown also greatly diminished migration of microvascular endothelial cells on collagen. The number of central focal adhesions in C2C12 cells on laminin was reduced by ICAP-1 knockdown and increased by ICAP-1 overexpression. Previously, we demonstrated that ICAP-1 binds to the ROCK-I kinase and translocates ROCK-I to the plasma membrane. We show here that the ROCK kinase inhibitor Y27362 reduces migration on laminin and causes a loss of central focal adhesions, similarly as ICAP-1 knockdown. ICAP-1 and ROCK were co-immune-precipitated from C2C12 cells, and in cells that overexpressed ICAP-1, YFP-ROCK was translocated to membrane ruffles. These results indicate that ICAP-1 regulates beta1 integrin-dependent cell migration by affecting the pattern of focal adhesion formation. This is likely due to ICAP-1-induced translocation of ROCK to beta1 integrin attachment sites.


Assuntos
Movimento Celular/fisiologia , Quimiotaxia/fisiologia , Adesões Focais/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Mioblastos/fisiologia , Actinas/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Linhagem Celular , DNA Complementar , Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia , Escherichia coli/genética , Técnica Indireta de Fluorescência para Anticorpo , Glutationa Transferase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Microscopia de Fluorescência , Faloidina , Testes de Precipitina , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/fisiologia , Transdução Genética , Transfecção , Vinculina/metabolismo , Quinases Associadas a rho/metabolismo
3.
J Cell Physiol ; 208(3): 620-8, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16741948

RESUMO

The integrin cytoplasmic domain-associated protein-1 (ICAP-1) binds via its C-terminal PTB (phosphotyrosine-binding) domain to the cytoplasmic tails of beta1 but not other integrins. Using the yeast two-hybrid assay, we found that ICAP-1 binds the ROCK-I kinase, an effector of the RhoA GTPase. By coimmunoprecipitation we show that ICAP-1 and ROCK form complexes in cells and that ICAP-1 contains two binding sites for ROCK. In cells transfected with both ICAP-1 and ROCK, the proteins colocalized at the cell membrane predominantly in lamellipodia and membrane ruffles, but also in retraction fibers. ROCK was not found at these sites when ICAP-1 was not co-transfected, indicating that ICAP-1 translocated ROCK. In lamellipodia ICAP-1 and ROCK colocalized with endogenous beta1 integrins and this colocalization was also observed with the isolated ICAP-1 PTB domain. The plasma membrane localization of ROCK did not depend on beta1 integrin ligation or ROCK kinase activity, and in truncated ROCK proteins it required the presence of the ICAP-1-binding domain. To show that the interaction was direct, we measured fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) fused to ICAP-1 and yellow fluorescent protein (YFP) fused to ROCK. FRET was observed in lamellipodia in cells that were induced to spread. These results indicate that ICAP-1-mediated binding of ROCK to beta1 integrin serves to localize the ROCK-I kinase to both the leading edge and the trailing edge where ROCK affects cell migration.


Assuntos
Membrana Celular/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , DNA/genética , Transferência Ressonante de Energia de Fluorescência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Fosfotirosina/metabolismo , Reação em Cadeia da Polimerase , Transfecção , Quinases Associadas a rho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA