Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Biol Chem ; 298(12): 102668, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334624

RESUMO

Three psbA genes (psbA1, psbA2, and psbA3) encoding the D1 subunit of photosystem II (PSII) are present in the thermophilic cyanobacterium Thermosynechococcus elongatus and are expressed differently in response to changes in the growth environment. To clarify the functional differences of the D1 protein expressed from these psbA genes, PSII dimers from two strains, each expressing only one psbA gene (psbA2 or psbA3), were crystallized, and we analyzed their structures at resolutions comparable to previously studied PsbA1-PSII. Our results showed that the hydrogen bond between pheophytin/D1 (PheoD1) and D1-130 became stronger in PsbA2- and PsbA3-PSII due to change of Gln to Glu, which partially explains the increase in the redox potential of PheoD1 observed in PsbA3. In PsbA2, one hydrogen bond was lost in PheoD1 due to the change of D1-Y147F, which may explain the decrease in stability of PheoD1 in PsbA2. Two water molecules in the Cl-1 channel were lost in PsbA2 due to the change of D1-P173M, leading to the narrowing of the channel, which may explain the lower efficiency of the S-state transition beyond S2 in PsbA2-PSII. In PsbA3-PSII, a hydrogen bond between D1-Ser270 and a sulfoquinovosyl-diacylglycerol molecule near QB disappeared due to the change of D1-Ser270 in PsbA1 and PsbA2 to D1-Ala270. This may result in an easier exchange of bound QB with free plastoquinone, hence an enhancement of oxygen evolution in PsbA3-PSII due to its high QB exchange efficiency. These results provide a structural basis for further functional examination of the three PsbA variants.


Assuntos
Cianobactérias , Complexo de Proteína do Fotossistema II , Cianobactérias/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
2.
Photosynth Res ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37751034

RESUMO

Flash-induced absorption changes in the Soret region arising from the [PD1PD2]+ state, the chlorophyll cation radical formed upon light excitation of Photosystem II (PSII), were measured in Mn-depleted PSII cores at pH 8.6. Under these conditions, TyrD is i) reduced before the first flash, and ii) oxidized before subsequent flashes. In wild-type PSII, when TyrD● is present, an additional signal in the [PD1PD2]+-minus-[PD1PD2] difference spectrum was observed when compared to the first flash when TyrD is not oxidized. The additional feature was "W-shaped" with troughs at 434 nm and 446 nm. This feature was absent when TyrD was reduced, but was present (i) when TyrD was physically absent (and replaced by phenylalanine) or (ii) when its H-bonding histidine (D2-His189) was physically absent (replaced by a Leucine). Thus, the simple difference spectrum without the double trough feature at 434 nm and 446 nm, seemed to require the native structural environment around the reduced TyrD and its H bonding partners to be present. We found no evidence of involvement of PD1, ChlD1, PheD1, PheD2, TyrZ, and the Cytb559 heme in the W-shaped difference spectrum. However, the use of a mutant of the PD2 axial His ligand, the D2-His197Ala, shows that the PD2 environment seems involved in the formation of "W-shaped" signal.

3.
Photosynth Res ; 152(3): 347-361, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34661808

RESUMO

Photosystem II (PSII), the oxygen-evolving enzyme, consists of 17 trans-membrane and 3 extrinsic membrane proteins. Other subunits bind to PSII during assembly, like Psb27, Psb28, and Tsl0063. The presence of Psb27 has been proposed (Zabret et al. in Nat Plants 7:524-538, 2021; Huang et al. Proc Natl Acad Sci USA 118:e2018053118, 2021; Xiao et al. in Nat Plants 7:1132-1142, 2021) to prevent the binding of PsbJ, a single transmembrane α-helix close to the quinone QB binding site. Consequently, a PSII rid of Psb27, Psb28, and Tsl0034 prior to the binding of PsbJ would logically correspond to an assembly intermediate. The present work describes experiments aiming at further characterizing such a ∆PsbJ-PSII, purified from the thermophilic Thermosynechococcus elongatus, by means of MALDI-TOF spectroscopy, thermoluminescence, EPR spectroscopy, and UV-visible time-resolved spectroscopy. In the purified ∆PsbJ-PSII, an active Mn4CaO5 cluster is present in 60-70% of the centers. In these centers, although the forward electron transfer seems not affected, the Em of the QB/QB- couple increases by ≥ 120 mV , thus disfavoring the electron coming back on QA. The increase of the energy gap between QA/QA- and QB/QB- could contribute in a protection against the charge recombination between the donor side and QB-, identified at the origin of photoinhibition under low light (Keren et al. in Proc Natl Acad Sci USA 94:1579-1584, 1997), and possibly during the slow photoactivation process.


Assuntos
Cianobactérias , Complexo de Proteína do Fotossistema II , Cianobactérias/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Subunidades Proteicas/metabolismo
4.
Physiol Plant ; 171(2): 183-199, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32359083

RESUMO

The Mn4 CaO5 cluster of photosystem II (PSII) advances sequentially through five oxidation states (S0 to S4 ). Under the enzyme cycle, two water molecules are oxidized, O2 is generated and four protons are released into the lumen. Umena et al. (2011) have proposed that, with other charged amino acids, the R323 residue of the D1 protein could contribute to regulate a proton egress pathway from the Mn4 CaO5 cluster and TyrZ via a proton channel identified from the 3D structure. To test this suggestion, a PsbA3/R323E site-directed mutant has been constructed and the properties of its PSII have been compared to those of the PsbA3-PSII by using EPR spectroscopy, polarography, thermoluminescence and time-resolved UV-visible absorption spectroscopy. Neither the oscillations with a period four nor the kinetics and S-state-dependent stoichiometry of the proton release were affected. However, several differences have been found: (1) the P680 + decay in the hundreds of ns time domain was much slower in the mutant, (2) the S2 QA - /DCMU and S3 QA - /DCMU radiative charge recombination occurred at higher temperatures and (3) the S0 TyrZ • , S1 TyrZ • , S2 TyrZ • split EPR signals induced at 4.2 K by visible light from the S0 TyrZ , S1 TyrZ , S2 TyrZ , respectively, and the (S2 TyrZ • )' induced by NIR illumination at 4.2 K of the S3 TyrZ state differed. It is proposed that the R323 residue of the D1 protein interacts with TyrZ likely via the H-bond network previously proposed to be a proton channel. Therefore, rather than participating in the egress of protons to the lumen, this channel could be involved in the relaxations of the H-bonds around TyrZ by interacting with the bulk, thus tuning the driving force required for TyrZ oxidation.


Assuntos
Arginina , Complexo de Proteína do Fotossistema II , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo , Prótons
5.
Biochemistry ; 58(42): 4276-4283, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31568726

RESUMO

Photosynthetic water oxidation takes place at the Mn4CaO5 cluster in photosystem II via a light-driven cycle of intermediates called S states (S0-S4). Clarifying how electron and proton transfer reactions are coupled with each other in the S2 → S3 transition, which occurs just before O-O bond formation, is crucial for understanding the water oxidation mechanism. Here, we investigated the pH dependence of the kinetics of the S2 → S3 transition using time-resolved infrared (TRIR) spectroscopy to identify the proton release phase in this transition. TRIR measurements of YD-less PSII core complexes from the D2-Y160F mutant of Thermosynechococcus elongatus showed that the last phase in this transition (τ ∼ 350 µs at pH 6) was strongly dependent on pH, and its time constant at pH 5 was larger than that at pH 8 by a factor of >3. In contrast, the earlier phase with a time constant of ∼100 µs was virtually independent of pH. These results strongly support the view that proton release is a rate-limiting step of the proton-coupled electron transfer in the last phase of the S2 → S3 transition. This proton release enables electron transfer by removing an excessive positive charge from the catalytic center and hence decreasing its redox potential.


Assuntos
Cianobactérias/química , Complexo de Proteína do Fotossistema II/química , Prótons , Espectrofotometria Infravermelho/métodos , Água/química , Domínio Catalítico , Transporte de Elétrons , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Oxirredução/efeitos da radiação , Complexo de Proteína do Fotossistema II/isolamento & purificação , Thermosynechococcus
6.
Photosynth Res ; 139(1-3): 475-486, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29779191

RESUMO

Cytb559 in Photosystem II is a heterodimeric b-type cytochrome. The subunits, PsbE and PsbF, consist each in a membrane α-helix. Mutants were previously designed and studied in Thermosynechococcus elongatus (Sugiura et al., Biochim Biophys Acta 1847:276-285, 2015) either in which an axial histidine ligand of the haem-iron was substituted for a methionine, the PsbE/H23M mutant in which the haem was lacking, or in which the haem environment was modified, the PsbE/Y19F and PsbE/T26P mutants. All these mutants remained active showing that the haem has no structural role provided that PsbE and PsbF subunits are present. Here, we have carried on the characterization of these mutants. The following results were obtained: (i) the Y19F mutation hardly affect the Em of Cytb559, whereas the T26P mutation converts the haem into a form with a Em much below 0 mV (so low that it is likely not reducible by QB-) even in an active enzyme; (ii) in the PsbE/H23M mutant, and to a less extent in PsbE/T26P mutant, the electron transfer efficiency from QA- to QB is decreased; (iii) the lower Em of the QA/QA- couple in the PsbE/H23M mutant correlates with a higher production of singlet oxygen; (iv) the superoxide and/or hydroperoxide formation was not increased in the PsbE/H23M mutant lacking the haem, whereas it was significantly larger in the PsbE/T26P. These data are discussed in view of the literature to discriminate between structural and redox roles for the haem of Cytb559 in the production of reactive oxygen species.


Assuntos
Cianobactérias/metabolismo , Grupo dos Citocromos b/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Cianobactérias/genética , Grupo dos Citocromos b/química , Grupo dos Citocromos b/genética , Mutação/genética , Oxirredução , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Espécies Reativas de Oxigênio/metabolismo
7.
Biochim Biophys Acta Bioenerg ; 1859(5): 342-356, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29499187

RESUMO

In Photosystem II (PSII), the Mn4CaO5-cluster of the active site advances through five sequential oxidation states (S0 to S4) before water is oxidized and O2 is generated. Here, we have studied the transition between the low spin (LS) and high spin (HS) configurations of S2 using EPR spectroscopy, quantum chemical calculations using Density Functional Theory (DFT), and time-resolved UV-visible absorption spectroscopy. The EPR experiments show that the equilibrium between S2LS and S2HS is pH dependent, with a pKa ≈ 8.3 (n ≈ 4) for the native Mn4CaO5 and pKa ≈ 7.5 (n ≈ 1) for Mn4SrO5. The DFT results suggest that exchanging Ca with Sr modifies the electronic structure of several titratable groups within the active site, including groups that are not direct ligands to Ca/Sr, e.g., W1/W2, Asp61, His332 and His337. This is consistent with the complex modification of the pKa upon the Ca/Sr exchange. EPR also showed that NH3 addition reversed the effect of high pH, NH3-S2LS being present at all pH values studied. Absorption spectroscopy indicates that NH3 is no longer bound in the S3TyrZ state, consistent with EPR data showing minor or no NH3-induced modification of S3 and S0. In both Ca-PSII and Sr-PSII, S2HS was capable of advancing to S3 at low temperature (198 K). This is an experimental demonstration that the S2LS is formed first and advances to S3via the S2HS state without detectable intermediates. We discuss the nature of the changes occurring in the S2LS to S2HS transition which allow the S2HS to S3 transition to occur below 200 K. This work also provides a protocol for generating S3 in concentrated samples without the need for saturating flashes.


Assuntos
Cianobactérias/enzimologia , Complexo de Proteína do Fotossistema II/química , Água/química , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo , Água/metabolismo
8.
J Biol Chem ; 292(23): 9599-9612, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28428249

RESUMO

Photosystem II catalyzes light-induced water oxidation leading to the generation of dioxygen indispensable for sustaining aerobic life on Earth. The Photosystem II reaction center is composed of D1 and D2 proteins encoded by psbA and psbD genes, respectively. In cyanobacteria, different psbA genes are present in the genome. The thermophilic cyanobacterium Thermosynechococcus elongatus contains three psbA genes: psbA1, psbA2, and psbA3, and a new c-type heme protein, Tll0287, was found to be expressed in a strain expressing the psbA2 gene only, but the structure and function of Tll0287 are unknown. Here we solved the crystal structure of Tll0287 at a 2.0 Å resolution. The overall structure of Tll0287 was found to be similar to some kinases and sensor proteins with a Per-Arnt-Sim-like domain rather than to other c-type cytochromes. The fifth and sixth axial ligands for the heme were Cys and His, instead of the His/Met or His/His ligand pairs observed for most of the c-type hemes. The redox potential, E½, of Tll0287 was -255 ± 20 mV versus normal hydrogen electrode at pH values above 7.5. Below this pH value, the E½ increased by ≈57 mV/pH unit at 15 °C, suggesting the involvement of a protonatable group with a pKred = 7.2 ± 0.3. Possible functions of Tll0287 as a redox sensor under microaerobic conditions or a cytochrome subunit of an H2S-oxidizing system are discussed in view of the environmental conditions in which psbA2 is expressed, as well as phylogenetic analysis, structural, and sequence homologies.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/química , Hemeproteínas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Cianobactérias/genética , Cianobactérias/metabolismo , Proteínas Ligantes de Grupo Heme , Hemeproteínas/genética , Hemeproteínas/metabolismo , Concentração de Íons de Hidrogênio , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Domínios Proteicos
9.
Biochim Biophys Acta Proteins Proteom ; 1866(5-6): 692-701, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29635040

RESUMO

Small heat shock protein 27 (HSP27) is an essential element of the proteostasis network in human cells. The HSP27 monomer coexists with the dimer, which can bind unfolded client proteins. Here, we evaluated the in-cell dimer-monomer equilibrium and its relevance to the binding of client proteins in a normal human vascular endothelial cell line. When cells were treated with a membrane-permeable crosslinker, the protein existed primarily as a free monomer (27 kDa) with a markedly smaller percentage of dimer (54 kDa), hetero-conjugates, and minor smear-like bands. When the protein was crosslinked in a cell-free lysate, two of the hetero-conjugates that were crosslinked in live cells were also detected, but the dimer and other complexes were absent. However, when cells were pretreated with fatty acid (FA) and/or heat (42.5 °C), dissociation of the dimer was selectively prevented and two types of covalently linked dimers were increased. These changes occurred most prominently in cells treated with docosahexaenoic acid (DHA) and heat, which appeared to intensify the heat resistance of the cell. Both the formation of covalently linked dimers and heat resistance were prevented by N-acetylcysteine. By contrast, nearly all of the free monomers in the lysate converted to disulfide bond-linked dimers by a simple, long incubation at 4 °C. These results strongly suggest that the monomer-dimer equilibrium of HSP27 was inversed between the in-cell and cell-free systems. Temperature- and amphiphile-regulated dimerization was restricted probably due to the low hydration of the in-cell crowding environment.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Proteínas de Choque Térmico HSP27/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Temperatura Alta , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Acetilcisteína/farmacologia , Ácido Araquidônico/farmacologia , Células Cultivadas , Ácido Eicosapentaenoico/farmacologia , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Chaperonas Moleculares , Peso Molecular , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Fatores de Tempo
10.
Biochim Biophys Acta ; 1857(12): 1943-1948, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27705821

RESUMO

Two mutants, D1-H198Q and D1-H198A, have been previously constructed in Thermosynechococcus elongatus with the aim at modifying the redox potential of the P680•+/P680 couple by changing the axial ligand of PD1, one the two chlorophylls of the Photosystem II primary electron donor [Sugiura et al., Biochim. Biophys. Acta 1777 (2008) 331-342]. However, after the publication of this work it was pointed out to us by Dr. Eberhard Schlodder (Technische Universität Berlin) that in both mutants the pheophytin band shift which is observed upon the reduction of QA was centered at 544nm instead of 547nm, clearly showing that the D1 protein corresponded to PsbA1 whereas the mutants were supposedly constructed in the psbA3 gene so that the conclusions in our previous paper were wrong. O2 evolving mutants have been therefore reconstructed and their analyze shows that they are now correct mutants which are suitable for further studies. Indeed, the D1-H198Q mutation downshifted by ≈3nm the P680•+/P680 difference absorption spectrum in the Soret region and increased the redox potential of the P680•+/P680 couple and the D1-H198A mutation decreased the redox potential of the P680•+/P680 couple all these effects being comparable to those which were observed in Synechocystis sp. PCC 6803 [Diner et al., Biochemistry 40 (2001) 9265-9281 and Merry et al. Biochemistry 37 (1998) 17,439-17,447]. We apologize for having presented wrong data and wrong conclusions in our earlier publication.

11.
Biochim Biophys Acta ; 1847(6-7): 576-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25843552

RESUMO

The site for water oxidation in Photosystem II (PSII) goes through five sequential oxidation states (S0 to S4) before O2 is evolved. It consists of a Mn4CaO5-cluster close to a redox-active tyrosine residue (YZ). Cl- is also required for enzyme activity. By using EPR spectroscopy it has been shown that both Ca2+/Sr2+ exchange and Cl-/I- exchange perturb the proportions of centers showing high (S=5/2) and low spin (S=1/2) forms of the S2-state. The S3-state was also found to be heterogeneous with: i) a S=3 form that is detectable by EPR and not sensitive to near-infrared light; and ii) a form that is not EPR visible but in which Mn photochemistry occurs resulting in the formation of a (S2YZ)' split EPR signal upon near-infrared illumination. In Sr/Cl-PSII, the high spin (S=5/2) form of S2 shows a marked heterogeneity with a g=4.3 form generated at low temperature that converts to a relaxed form at g=4.9 at higher temperatures. The high spin g=4.9 form can then progress to the EPR detectable form of S3 at temperatures as low as 180K whereas the low spin (S=1/2) S2-state can only advance to the S3 state at temperatures≥235 K. Both of the two S2 configurations and the two S3 configurations are each shown to be in equilibrium at ≥235 K but not at 198 K. Since both S2 configurations are formed at 198 K, they likely arise from two specific populations of S1. The existence of heterogeneous populations in S1, S2 and S3 states may be related to the structural flexibility associated with the positioning of the oxygen O5 within the cluster highlighted in computational approaches and which has been linked to substrate exchange. These data are discussed in the context of recent in silico studies of the electron transfer pathways between the S2-state(s) and the S3-state(s).


Assuntos
Cálcio/química , Cloretos/química , Iodetos/química , Complexo de Proteína do Fotossistema II/química , Estrôncio/química , Synechococcus/química , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Oxirredução , Oxigênio/química , Temperatura
12.
Biochim Biophys Acta ; 1847(2): 276-285, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25481108

RESUMO

Cytb559 in Photosystem II is a heterodimeric b-type cytochrome. The subunits, PsbE and PsbF, consist each in a membrane α-helix. Roles for Cytb559 remain elusive. In Thermosynechococcus elongatus, taking advantage of the robustness of the PSII variant with PsbA3 as the D1 subunit (WT*3), 4 mutants were designed hoping to get mutants nevertheless the obligatory phototrophy of this cyanobacterium. In two of them, an axial histidine ligand of the haem-iron was substituted for either a methionine, PsbE/H23M, which could be potentially a ligand or for an alanine, PsbE/H23A, which cannot. In the other mutants, PsbE/Y19F and PsbE/T26P, the environment around PsbE/H23 was expected to be modified. From EPR, MALDI-TOF and O2 evolution activity measurements, the following results were obtained: Whereas the PsbE/H23M and PsbE/H23A mutants assemble only an apo-Cytb559 the steady-state level of active PSII was comparable to that in WT*3. The lack of the haem or, in PsbE/T26P, conversion of the high-potential into a lower potential form, slowed-down the recovery rate of the O2 activity after high-light illumination but did not affect the photoinhibition rate. This resulted in the following order for the steady-state level of active PSII centers under high-light conditions: PsbE/H23M≈PsbE/H23A<< PsbE/Y19F≤PsbE/T26P≤WT*3. These data show i) that the haem has no structural role provided that PsbE and PsbF are present, ii) a lack of correlation between the rate of photoinhibition and the Em of the haem and iii) that the holo-Cytb559 favors the recovery of a functional enzyme upon photoinhibition.


Assuntos
Grupo dos Citocromos b/química , Complexo de Proteína do Fotossistema II/química , Sequência de Aminoácidos , Sequência de Bases , Grupo dos Citocromos b/fisiologia , Espectroscopia de Ressonância de Spin Eletrônica , Luz , Dados de Sequência Molecular , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/fisiologia
13.
Biochim Biophys Acta ; 1837(9): 1427-34, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24388918

RESUMO

Cyanobacteria have multiple psbA genes encoding PsbA, the D1 reaction center protein of the Photosystem II complex which bears together with PsbD, the D2 protein, most of the cofactors involved in electron transfer reactions. The thermophilic cyanobacterium Thermosynechococcus elongatus has three psbA genes differently expressed depending on the environmental conditions. Among the 344 residues constituting each of the 3 possible PsbA variants there are 21 substitutions between PsbA1 and PsbA3, 31 between PsbA1 and PsbA2 and 27 between PsbA2 and PsbA3. In this review, we summarize the changes already identified in the properties of the redox cofactors depending on the D1 variant constituting Photosystem II in T. elongatus. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.


Assuntos
Cianobactérias/metabolismo , Complexo de Proteína do Fotossistema II/química , Sequência de Aminoácidos , Transporte de Elétrons , Luz , Dados de Sequência Molecular , Quinonas/química
14.
Biochim Biophys Acta ; 1837(1): 139-48, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24060528

RESUMO

In Photosystem II (PSII) of the cyanobacterium Thermosynechococcus elongatus, glutamate 130 in the high-light variant of the D1-subunit (PsbA3) was changed to glutamine in a strain lacking the two other genes for D1, psbA1 and psbA2. The resulting PSII (PsbA3/Glu130Gln) was compared with those from the "native" high-light (PsbA3-PSII) and low-light (PsbA1-PSII) variants, which differ by 21 amino acid including Glu130Gln. H-bonding from D1-Glu130Gln to the primary electron acceptor, PheophytinD1 (PheoD1), is known to affect the Em of the PheoD1/PheoD1(-) couple. The Gln130 mutation here had little effect on water splitting, charge accumulation and photosensitivity but did slow down S2QA(-) charge recombination and up-shift the thermoluminescence while increasing its yield. These changes were consistent with a ≈-30mV shift of the PheoD1/PheoD1(-)Em, similar to earlier single site-mutation results from other species and double the ≈-17mV shift seen for PsbA1-PSII versus PsbA3-PSII. This is attributed to the influence of the other 20 amino-acids that differ in PsbA3. A computational model for simulating S2QA(-) recombination matched the experimental trend: the S2QA(-) recombination rate in PsbA1-PSII differed only slightly from that in PsbA3-PSII, while in Glu130-PsbA3-PSII there was a more pronounced slowdown of the radical pair decay. The simulation predicted a major effect of the PheoD1/PheoD1(-) potential on (1)O2 yield (~60% in PsbA1-PSII, ~20% in PsbA3-PSII and ~7% in Gln130-PsbA3-PSII), reflecting differential sensitivities to high light.


Assuntos
Cianobactérias/química , Feofitinas/química , Complexo de Proteína do Fotossistema II/química , Cianobactérias/metabolismo , Transporte de Elétrons , Ácido Glutâmico/genética , Glutamina/genética , Luz , Mutação , Oxirredução , Feofitinas/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo
15.
Biochim Biophys Acta ; 1837(12): 1922-1931, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25193561

RESUMO

The main cofactors of Photosystem II (PSII) are borne by the D1 and D2 subunits. In the thermophilic cyanobacterium Thermosynechococcus elongatus, three psbA genes encoding D1 are found in the genome. Among the 344 residues constituting the mature form of D1, there are 21 substitutions between PsbA1 and PsbA3, 31 between PsbA1 and PsbA2, and 27 between PsbA2 and PsbA3. In a previous study (Sugiura et al., J. Biol. Chem. 287 (2012), 13336-13347) we found that the oxidation kinetics and spectroscopic properties of TyrZ were altered in PsbA2-PSII when compared to PsbA(1/3)-PSII. The comparison of the different amino acid sequences identified the residues Cys144 and Pro173 found in PsbA1 and PsbA3, as being substituted in PsbA2 by Pro144 and Met173, and thus possible candidates accounting for the changes in the geometry and/or the environment of the TyrZ/His190 phenol/imidizol motif. Indeed, these amino acids are located upstream of the α-helix bearing TyrZ and between the two α-helices bearing TyrZ and its hydrogen-bonded partner, D1/His190. Here, site-directed mutants of PSII, PsbA3/Pro173Met and PsbA2/Met173Pro, were analyzed using X- and W-band EPR and UV-visible time-resolved absorption spectroscopy. The Pro173Met substitution in PsbA2-PSII versus PsbA3-PSII is shown to be the main structural determinant of the previously described functional differences between PsbA2-PSII and PsbA3-PSII. In PsbA2-PSII and PsbA3/Pro173Met-PSII, we found that the oxidation of TyrZ by P680+● was specifically slowed during the transition between S-states associated with proton release. We thus propose that the increase of the electrostatic charge of the Mn4CaO5 cluster in the S2 and S3 states could weaken the strength of the H-bond interaction between TyrZ● and D1/His190 in PsbA2 versus PsbA3 and/or induce structural modification(s) of the water molecules network around TyrZ.


Assuntos
Aminoácidos/genética , Proteínas de Bactérias/genética , Histidina/genética , Complexo de Proteína do Fotossistema II/genética , Tirosina/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cianobactérias/química , Cianobactérias/genética , Cianobactérias/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Histidina/química , Histidina/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Espectrofotometria , Tirosina/química , Tirosina/metabolismo
16.
Biochim Biophys Acta ; 1827(10): 1174-82, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23770319

RESUMO

Cyanobacteria have multiple psbA genes encoding PsbA, the D1 reaction center protein of the Photosystem II (PSII) complex. The thermophilic cyanobacterium Thermosynechococcus elongatus has three psbA genes differently expressed depending on the environmental conditions. Among the 344 residues of PsbA, there are 21 substitutions between PsbA1 and PsbA3, 31 between PsbA1 and PsbA2 and 27 between PsbA2 and PsbA3. In this study, we found a new hemoprotein that is expressed when the T. elongatus genome has only the psbA2 gene for D1. This hemoprotein was found in both the non-membrane proteins and associated to the purified PsbA2-PSII core complex. This protein could be removed by the washing of PSII with Tris-washing or CaCl2-washing. From MALDI-TOF/TOF spectrometry, N-terminal sequencing and MALDI-MS/MS analysis upon tryptic digestion, the new hemoprotein was identified to be the tll0287 gene product with a molecular mass close to 19kDa. Until now, tll0287 was registered as a gene encoding a hypothetical protein with an unknown function. From the amino acid sequence and the EPR spectrum the 5th and 6th axial ligands of the heme iron are the His145 and likely either the Tyr93, Tyr159 or Tyr165, respectively. From EPR, the heme containing Tll0287 protein associated to PsbA2-PSII corresponds to approximately 25% of the Cytc550 content whereas, from SDS page analysis, the total amount of Tll0287 with and without the heme seems almost in a stoichiometric amount with PsbA2-PSII. Homologous genes to tll0287 are found in several cyanobacteria. Possible roles for Tll0287 are suggested.


Assuntos
Hemeproteínas/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechococcus/metabolismo , Sequência de Aminoácidos , Cromatografia em Gel , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Dados de Sequência Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Biochim Biophys Acta Bioenerg ; 1865(1): 149013, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717932

RESUMO

Photosystem II is the water/plastoquinone photo-oxidoreductase of photosynthesis. The photochemistry and catalysis occur in a quasi-symmetrical heterodimer, D1D2, that evolved from a homodimeric ancestor. Here, we studied site-directed mutants in PSII from the thermophilic cyanobacterium Thermosynechoccocus elongatus, focusing on the primary electron donor chlorophyll a in D1, ChlD1, and on its symmetrical counterpart in D2, ChlD2, which does not play a direct photochemical role. The main conserved amino acid specific to ChlD1 is D1/T179, which H-bonds the water ligand to its Mg2+, while its counterpart near ChlD2 is the non-H-bonding D2/I178. The symmetrical-swapped mutants, D1/T179I and D2/I178T, and a second ChlD2 mutant, D2/I178H, were studied. The D1 mutations affected the 686 nm absorption attributed to ChlD1, while the D2 mutations affected a 663 nm feature, tentatively attributed to ChlD2. The mutations had little effect on enzyme activity and forward electron transfer, reflecting the robustness of the overall enzyme function. In contrast, the mutations significantly affected photodamage and protective mechanisms, reflecting the importance of redox tuning in these processes. In D1/T179I, the radical pair recombination triplet on ChlD1 was shared onto a pheophytin, presumably PheD1 and the detection of 3PheD1 supports the proposed mechanism for the anomalously short lifetime of 3ChlD1; e.g. electron transfer quenching by QA- of 3PheD1 after triplet transfer from 3ChlD1. In D2/I178T, a charge separation could occur between ChlD2 and PheD2, a reaction that is thought to occur in ancestral precursors of PSII. These mutants help understand the evolution of asymmetry in PSII.


Assuntos
Aminoácidos , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Aminoácidos/genética , Clorofila A , Clorofila/metabolismo , Mutagênese Sítio-Dirigida , Água
18.
Biochemistry ; 52(52): 9426-31, 2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24320870

RESUMO

The electron density map of the 3D crystal of Photosystem II from Thermosynechococcus vulcanus with a 1.9 Šresolution (PDB: 3ARC ) exhibits, in the two monomers in the asymmetric unit cell, an, until now, unidentified and uninterpreted strong difference in electron density centered at a distance of around 1.5 Šfrom the nitrogen Nδ of the imidazole ring of D2-His336. By MALDI-TOF/MS upon tryptic digestion, it is shown that ~20-30% of the fragments containing the D2-His336 residue of Photosystem II from both Thermosynechococcus vulcanus and Thermosynechococcus elongatus bear an extra mass of +16 Da. Such an extra mass likely corresponds to an unprecedented post-translational or chemical hydroxyl modification of histidine.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Histidina/metabolismo , Radical Hidroxila/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Cianobactérias/química , Cianobactérias/genética , Histidina/química , Histidina/genética , Modelos Moleculares , Peso Molecular , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética
19.
J Biol Chem ; 287(16): 13336-47, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22362776

RESUMO

The main cofactors that determine the photosystem II (PSII) oxygen evolution activity are borne by the D1 and D2 subunits. In the cyanobacterium Thermosynechococcus elongatus, there are three psbA genes coding for D1. Among the 344 residues constituting D1, there are 21 substitutions between PsbA1 and PsbA3, 31 between PsbA1 and PsbA2, and 27 between PsbA2 and PsbA3. Here, we present the first study of PsbA2-PSII. Using EPR and UV-visible time-resolved absorption spectroscopy, we show that: (i) the time-resolved EPR spectrum of Tyr(Z)(•) in the (S(3)Tyr(Z)(•))' is slightly modified; (ii) the split EPR signal arising from Tyr(Z)(•) in the (S(2)Tyr(Z)(•))' state induced by near-infrared illumination at 4.2 K of the S(3)Tyr(Z) state is significantly modified; and (iii) the slow phases of P(680)(+) reduction by Tyr(Z) are slowed down from the hundreds of µs time range to the ms time range, whereas both the S(1)Tyr(Z)(•) → S(2)Tyr(Z) and the S(3)Tyr(Z)(•) → S(0)Tyr(Z) + O(2) transition kinetics remained similar to those in PsbA(1/3)-PSII. These results show that the geometry of the Tyr(Z) phenol and its environment, likely the Tyr-O···H···Nε-His bonding, are modified in PsbA2-PSII when compared with PsbA(1/3)-PSII. They also point to the dynamics of the proton-coupled electron transfer processes associated with the oxidation of Tyr(Z) being affected. From sequence comparison, we propose that the C144P and P173M substitutions in PsbA2-PSII versus PsbA(1/3)-PSII, respectively located upstream of the α-helix bearing Tyr(Z) and between the two α-helices bearing Tyr(Z) and its hydrogen-bonded partner, His-190, are responsible for these changes.


Assuntos
Complexo de Proteína do Fotossistema II/metabolismo , Synechococcus/enzimologia , Água/metabolismo , Ativação Enzimática/fisiologia , Ligação de Hidrogênio , Lasers , Oxigênio/química , Oxigênio/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Estrutura Terciária de Proteína , Subunidades Proteicas , Especificidade por Substrato , Synechococcus/genética , Água/química
20.
Biochim Biophys Acta ; 1817(8): 1322-30, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22326861

RESUMO

The sensitivity to high light conditions of Photosystem II with either PsbA1 (WT*1) or PsbA3 (WT*3) as the D1 protein was studied in whole cells of the thermophilic cyanobacterium Thermosynechococcus elongatus. When the cells are cultivated under high light conditions the following results were found: (i) The O(2) evolution activity decreases faster in WT*1 cells than in WT*3 cells both in the absence and in the presence of lincomycin, a protein synthesis inhibitor; (ii) In WT*1 cells, the rate constant for the decrease of the O(2) evolution activity is comparable in the presence and in the absence of lincomycin; (iii) The D1 content revealed by western blot analysis decays similarly in both WT*1 and WT*3 cells and much slowly than O(2) evolution; (iv) The faster decrease in O(2) evolution in WT*1 than in WT*3 cells correlates with a much faster inhibition of the S(2)-state formation; (v) The shape of the WT*1 cells is altered. All these results are in agreement with a photo-inhibition process resulting in the loss of the O(2) activity much faster than the D1 turnover in PsbA1-PSII and likely to a greater production of reactive oxygen species under high light conditions in WT*1 than in WT*3. This latter result is discussed in view of the known effects of the PsbA1 to PsbA3 substitution on the redox properties of the Photosystem II cofactors. The observation that under low light conditions WT*3 cells are able to express the psbA(3) gene, whereas under similar conditions wild type cells are expressing mainly the psbA(1) gene is also discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Assuntos
Cianobactérias/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Luz , Lincomicina/farmacologia , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA