Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(39): 10974-9, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27625425

RESUMO

In mammals, initial detection of olfactory stimuli is mediated by sensory neurons in the main olfactory epithelium (MOE) and the vomeronasal organ (VNO). The heterotrimeric GTP-binding protein Go is widely expressed in the MOE and VNO of mice. Early studies indicated that Go expression in VNO sensory neurons is critical for directing social and sexual behaviors in female mice [Oboti L, et al. (2014) BMC Biol 12:31]. However, the physiological functions of Go in the MOE have remained poorly defined. Here, we examined the role of Go in the MOE using mice lacking the α subunit of Go Development of the olfactory bulb (OB) was perturbed in mutant mice as a result of reduced neurogenesis and increased cell death. The balance between cell types of OB interneurons was altered in mutant mice, with an increase in the number of tyrosine hydroxylase-positive interneurons at the expense of calbindin-positive interneurons. Sexual behavior toward female mice and preference for female urine odors by olfactory sensory neurons in the MOE were abolished in mutant male mice. Our data suggest that Go signaling is essential for the structural and functional integrity of the MOE and for specification of OB interneurons, which in turn are required for the transmission of pheromone signals and the initiation of mating behavior with the opposite sex.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Mucosa Olfatória/metabolismo , Comportamento Sexual Animal , Animais , Apoptose/genética , Contagem de Células , Células Cultivadas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Deleção de Genes , Interneurônios/metabolismo , Masculino , Camundongos , Modelos Biológicos , Neurogênese/genética , Bulbo Olfatório/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Tirosina 3-Mono-Oxigenase/metabolismo , Órgão Vomeronasal/metabolismo
2.
J Biol Chem ; 290(28): 17401-14, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26023233

RESUMO

Recent groundbreaking work has demonstrated that combined expression of the transcription factors Brn2, Ascl1, and Myt1L (BAM; also known as Wernig factors) convert mouse fibroblasts into postmitotic neuronal cells. However, questions remain regarding whether trans-conversion is achieved directly or involves an intermediary precursor stage. Trans-conversion toward expandable neural precursor cells (NPCs) is more useful than direct one-step neuron formation with respect to yielding a sufficient number of cells and the feasibility of manipulating NPC differentiation toward certain neuron subtypes. Here, we show that co-expression of Wernig factors and Bcl-xL induces fibroblast conversion into NPCs (induced NPCs (iNPCs)) that are highly expandable for >100 passages. Gene expression analyses showed that the iNPCs exhibited high expression of common NPC genes but not genes specific to defined embryonic brain regions. This finding indicated that a regional identity of iNPCs was not established. Upon induction, iNPCs predominantly differentiated into astrocytes. However, the differentiation potential was not fixed and could be efficiently manipulated into general or specific subtypes of neurons by expression of additional genes. Specifically, overexpression of Nurr1 and Foxa2, transcription factors specific for midbrain dopamine neuron development, drove iNPCs to yield mature midbrain dopamine neurons equipped with presynaptic DA neuronal functions. We further assessed the therapeutic potential of iNPCs in Parkinson disease model rats.


Assuntos
Transdiferenciação Celular , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Reprogramação Celular , Expressão Gênica , Fator 3-beta Nuclear de Hepatócito/genética , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Fatores do Domínio POU/genética , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/terapia , Ratos , Ratos Endogâmicos Lew , Ratos Wistar , Fatores de Transcrição/genética
3.
Biochem Biophys Res Commun ; 467(4): 1063-9, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26441085

RESUMO

Reelin, a large secreted extracellular matrix glycoprotein, plays a key role in neuronal migration during cortical development and promotes neuronal maturation. The signaling pathway regulating neuronal maturation in the postnatal period are relatively less well understood. In this study, we demonstrated that a heterotrimeric G protein, Go, is a novel target of Reelin-induced signaling to promote neurite outgrowth. In primary hippocampal neurons of Reelin-deficient reeler mice, neurite outgrowth was significantly reduced and rescued upon addition of Reelin. Pertussis toxin (PTX) treatment or transfection with Gαo-siRNA suppressed Reelin-mediated neurite outgrowth in wild-type neurons. Additionally, Reelin treatment led to increased phosphorylation of AKT, GSK3ß, and JNK, which were all effectively blocked by the PI3K inhibitor, LY294002. By comparison, PTX specifically blocked JNK activation, but not AKT and GSK3ß. Immunoprecipitation assays disclosed that Reelin increases the active forms of both Src and Gαo and promotes their direct association. Notably, Dab1, a cytoplasmic adaptor molecule that mediates Reelin signaling, did not interact with Gαo. Neurite outgrowth by Reelin was induced via activating Src kinase, which directly stimulated Gαo, activity, leading to JNK activation. Based on the collective findings, we suggest that Reelin-dependent signaling mechanisms may be split into Src-AKT-dependent and Src-Go-dependent pathways. Our results additionally provide evidence that Reelin receptors cross-communicate with heterologous G protein-coupled receptors (GPCR) independently of the cognate ligands of GPCR.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Animais , Camundongos , Proteína Reelina
4.
Neurobiol Dis ; 58: 249-57, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23759293

RESUMO

Transplantation of mesenchymal stem cells (MSCs) has been shown to enhance the recovery of brain functions following ischemic injury. Although immune modulation has been suggested to be one of the mechanisms, the molecular mechanisms underlying improved recovery has not been clearly identified. Here, we report that MSCs secrete transforming growth factor-beta (TGF-ß) to suppress immune propagation in the ischemic rat brain. Ischemic stroke caused global death of resident cells in the infarcted area, elevated the monocyte chemoattractant protein-1 (MCP-1) level, and evoked massive infiltration of circulating CD68+ immune cells through the impaired blood-brain barrier. Transplantation of MSCs at day 3 post-ischemia blocked the subsequent upregulation of MCP-1 in the ischemic area and the infiltration of additional CD68+ immune cells. MSC-conditioned media decreased the migration and MCP-1 production of freshly isolated immune cells in vitro, and this effect was blocked by an inhibitor of TGF-ß signaling or an anti-TGF-ß neutralizing antibody. Finally, transplantation of TGF-ß1-silenced MSCs failed to attenuate the infiltration of CD68+ cells into the ischemic brain, and was associated with only minor improvements in motor function. These results indicate that TGF-ß is key to the ability of MSCs to beneficially attenuate immune reactions in the ischemic brain. Our findings offer insight into the interactions between allogeneic MSCs and the host immune system, reinforcing the prospective clinical value of using MSCs in the treatment of neurological disorders involving inflammation-mediated secondary damage.


Assuntos
Infarto da Artéria Cerebral Média/imunologia , Infarto da Artéria Cerebral Média/cirurgia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Antígenos CD/metabolismo , Barreira Hematoencefálica/fisiopatologia , Infarto Encefálico/etiologia , Proteínas de Ligação ao Cálcio/metabolismo , Movimento Celular , Células Cultivadas , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Encefalite/etiologia , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/fisiologia , Infarto da Artéria Cerebral Média/complicações , Masculino , Proteínas dos Microfilamentos/metabolismo , Peroxidase/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Fator de Crescimento Transformador beta/imunologia
5.
Am J Cancer Res ; 13(6): 2439-2451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424825

RESUMO

Cancer immunotherapy has emerged as a promising approach for treating various malignancies. In this study, we investigated the combined therapeutic effects of mesenchymal stem cells expressing cytosine deaminase (MSC/CD) and 5-fluorocytosine (5-FC) with α-galactosylceramide (α-GalCer) in a colon cancer model. Our findings demonstrated that the combination of MSC/CD, 5-FC, and α-GalCer resulted in enhanced antitumor activity compared to the individual treatments. This was evidenced by increased infiltration of immune cells, such as natural killer T (NKT) cells, antigen-presenting cells (APCs), T cells, and natural killer (NK) cells, in the tumor microenvironment, as well as elevated expression of proinflammatory cytokines and chemokines. Furthermore, we observed no significant hepatotoxicity following the combined treatment. Our study highlights the potential therapeutic benefits of combining MSC/CD, 5-FC, and α-GalCer for colon cancer treatment and contributes valuable insights to the field of cancer immunotherapy. Future research should focus on elucidating the underlying mechanisms and exploring the applicability of these findings to other cancer types and immunotherapy strategies.

6.
Int J Stem Cells ; 16(4): 415-424, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37643762

RESUMO

Therapeutic efficacy of mesenchymal stem cells (MSCs) is determined by biodistribution and engraftment in vivo. Compared to intravenous infusion, biodistribution of locally transplanted MSCs are partially understood. Here, we performed a pharmacokinetics (PK) study of MSCs after local transplantation. We grafted human MSCs into the brains of immune-compromised nude mice. Then we extracted genomic DNA from brains, lungs, and livers after transplantation over a month. Using quantitative polymerase chain reaction with human Alu-specific primers, we analyzed biodistribution of the transplanted cells. To evaluate the role of residual immune response in the brain, MSCs expressing a cytosine deaminase (MSCs/CD) were used to ablate resident immune cells at the injection site. The majority of the Alu signals mostly remained at the injection site and decreased over a week, finally becoming undetectable after one month. Negligible signals were transiently detected in the lung and liver during the first week. Suppression of Iba1-positive microglia in the vicinity of the injection site using MSCs/CD prolonged the presence of the Alu signals. After local transplantation in xenograft animal models, human MSCs remain predominantly near the injection site for limited time without disseminating to other organs. Transplantation of human MSCs can locally elicit an immune response in immune compromised animals, and suppressing resident immune cells can prolong the presence of transplanted cells. Our study provides valuable insights into the in vivo fate of locally transplanted stem cells and a local delivery is effective to achieve desired dosages for neurological diseases.

7.
Am J Cancer Res ; 13(6): 2410-2425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424800

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with poor prognosis and limited treatment options. While 5-fluorouracil (5-FU) has not been widely employed in GBM therapy, emerging research indicates its potential for effectiveness when combined with advanced drug delivery systems to improve its transport to brain tumors. This study aims to investigate the role of THOC2 expression in 5-FU resistance in GBM cell lines. We evaluated diverse GBM cell lines and primary glioma cells for 5-FU sensitivity, cell doubling times, and gene expression. We observed a significant correlation between THOC2 expression and 5-FU resistance. To further investigate this correlation, we selected five GBM cell lines and developed 5-FU resistant GBM cells, including T98FR cells, through long-term 5-FU treatment. In 5-FU challenged cells, THOC2 expression was upregulated, with the highest increase in T98FR cells. THOC2 knockdown in T98FR cells reduced 5-FU IC50 values, confirming its role in 5-FU resistance. In a mouse xenograft model, THOC2 knockdown attenuated tumor growth and extended survival duration after 5-FU treatment. RNA sequencing identified differentially expressed genes and alternative splicing variants in T98FR/shTHOC2 cells. THOC2 knockdown altered Bcl-x splicing, increasing pro-apoptotic Bcl-xS expression, and impaired cell adhesion and migration by reducing L1CAM expression. These results suggest that THOC2 plays a crucial role in 5-FU resistance in GBM and that targeting THOC2 expression could be a potential therapeutic strategy for improving the efficacy of 5-FU-based combination therapies in GBM patients.

8.
Int J Stem Cells ; 16(4): 438-447, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37385638

RESUMO

Recently, ex-vivo gene therapy has emerged as a promising approach to enhance the therapeutic potential of mesenchymal stem cells (MSCs) by introducing functional genes in vitro. Here, we explored the need of using selection markers to increase the gene delivery efficiency and evaluated the potential risks associated with their use in the manufacturing process. We used MSCs/CD that carry the cytosine deaminase gene (CD) as a therapeutic gene and a puromycin resistance gene (PuroR) as a selection marker. We evaluated the correlation between the therapeutic efficacy and the purity of therapeutic MSCs/CD by examining their anti-cancer effect on co-cultured U87/GFP cells. To simulate in vivo horizontal transfer of the PuroR gene in vivo, we generated a puromycin-resistant E. coli (E. coli/PuroR) by introducing the PuroR gene and assessed its responsiveness to various antibiotics. We found that the anti-cancer effect of MSCs/CD was directly proportional to their purity, suggesting the crucial role of the PuroR gene in eliminating impure unmodified MSCs and enhancing the purity of MSCs/CD during the manufacturing process. Additionally, we found that clinically available antibiotics were effective in inhibiting the growth of hypothetical microorganism, E. coli/PuroR. In summary, our study highlights the potential benefits of using the PuroR gene as a selection marker to enhance the purity and efficacy of therapeutic cells in MSC-based gene therapy. Furthermore, our study suggests that the potential risk of horizontal transfer of antibiotics resistance genes in vivo can be effectively managed by clinically available antibiotics.

9.
Korean J Physiol Pharmacol ; 16(6): 405-11, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23269903

RESUMO

The spontaneous axon regeneration of damaged neurons is limited after spinal cord injury (SCI). Recently, mesenchymal stem cell (MSC) transplantation was proposed as a potential approach for enhancing nerve regeneration that avoids the ethical issues associated with embryonic stem cell transplantation. As SCI is a complex pathological entity, the treatment of SCI requires a multipronged approach. The purpose of the present study was to investigate the functional recovery and therapeutic potential of human MSCs (hMSCs) and polymer in a spinal cord hemisection injury model. Rats were subjected to hemisection injuries and then divided into three groups. Two groups of rats underwent partial thoracic hemisection injury followed by implantation of either polymer only or polymer with hMSCs. Another hemisection-only group was used as a control. Behavioral, electrophysiological and immunohistochemical studies were performed on all rats. The functional recovery was significantly improved in the polymer with hMSC-transplanted group as compared with control at five weeks after transplantation. The results of electrophysiologic study demonstrated that the latency of somatosensory-evoked potentials (SSEPs) in the polymer with hMSC-transplanted group was significantly shorter than in the hemisection-only control group. In the results of immunohistochemical study, ß-gal-positive cells were observed in the injured and adjacent sites after hMSC transplantation. Surviving hMSCs differentiated into various cell types such as neurons, astrocytes and oligodendrocytes. These data suggest that hMSC transplantation with polymer may play an important role in functional recovery and axonal regeneration after SCI, and may be a potential therapeutic strategy for SCI.

10.
Mol Cells ; 45(7): 479-494, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35356894

RESUMO

Human mesenchymal stem cells (MSCs) are multipotent stem cells that have been intensively studied as therapeutic tools for a variety of disorders. To enhance the efficacy of MSCs, therapeutic genes are introduced using retroviral and lentiviral vectors. However, serious adverse events (SAEs) such as tumorigenesis can be induced by insertional mutagenesis. We generated lentiviral vectors encoding the wild-type herpes simplex virus thymidine kinase (HSV-TK) gene and a gene containing a point mutation that results in an alanine to histidine substitution at residue 168 (TK(A168H)) and transduced expression in MSCs (MSC-TK and MSC-TK(A168H)). Transduction of lentiviral vectors encoding the TK(A168H) mutant did not alter the proliferation capacity, mesodermal differentiation potential, or surface antigenicity of MSCs. The MSC-TK(A168H) cells were genetically stable, as shown by karyotyping. MSC-TK(A168H) responded to ganciclovir (GCV) with an half maximal inhibitory concentration (IC50) value 10-fold less than that of MSC-TK. Because MSC-TK(A168H) cells were found to be non-tumorigenic, a U87-TK(A168H) subcutaneous tumor was used as a SAE-like condition and we evaluated the effect of valganciclovir (vGCV), an oral prodrug for GCV. U87-TK(A168H) tumors were more efficiently ablated by 200 mg/kg vGCV than U87-TK tumors. These results indicate that MSC-TK(A168H) cells appear to be pre-clinically safe for therapeutic use. We propose that genetic modification with HSV-TK(A168H) makes allogeneic MSC-based ex vivo therapy safer by eliminating transplanted cells during SAEs such as uncontrolled cell proliferation.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Timidina Quinase , Animais , Antivirais/farmacologia , Ganciclovir/uso terapêutico , Terapia Genética/métodos , Vetores Genéticos/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neoplasias/terapia , Simplexvirus/enzimologia , Timidina Quinase/uso terapêutico
11.
Glia ; 59(7): 1094-106, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21538562

RESUMO

Spontaneous remyelination after spinal cord injury (SCI) is limited probably due to inadequate signaling to generate sufficient OLs from progenitor cells. The present study tested a hypothesis that introduction of olig genes, critical regulators of OL development, into immature proliferating cells could increase oligodendrogenesis after contusive SCI in adult rats. Recombinant retroviruses encoding Olig1 and Olig2 transcription factors, separately or in combination, with green fluorescent protein (GFP) were injected into the injured spinal cord. Unexpectedly, introduction of Olig2-GFP retroviruses led to a marked hyperplasia of GFP+ cells at 1 week, and soft agar colony forming assay of isolated GFP+ cells confirmed Olig2-induced tumorous transformation. In contrast, Olig1 did not alter the number of GFP+ cells. Simultaneous expression of Olig1 and Olig2 (Olig1/2) led to a marked increase in the number of GFP+ cells without tumor formation. The proportion of GFP+ cells with OL progenitor markers was increased by Olig1/2. Moreover, Olig1/2 robustly increased the proportion of mature OLs and expression of myelin related proteins, while Olig1 alone exhibited only modest effects. Olig1/2 upregulated Sox10, which drives terminal OL differentiation, implicating Sox 10 as a mediator of Olig1/2 effects on the maturation. Finally, injection of Olig1/2 retroviruses significantly improved a quality of hindpaws locomotion and increased the total number of OLs after SCI. Activation of both Olig1 and Olig2 may be beneficial by both increasing the progenitor cell proliferation and enhancing OL differentiation in the injured spinal cord.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células , Proteínas do Tecido Nervoso/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Análise de Variância , Animais , Contagem de Células , Células Cultivadas , Córtex Cerebral/citologia , Ensaio de Unidades Formadoras de Colônias/métodos , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/metabolismo , Locomoção/fisiologia , Neuroglia/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Células-Tronco/fisiologia , Transfecção/métodos
12.
Stem Cells ; 28(10): 1816-28, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20979137

RESUMO

Neuronal precursor cells (NPCs) are temporally regulated and have the ability to proliferate and differentiate into mature neurons, oligodendrocytes, and astrocytes in the presence of growth factors (GFs). In the present study, the role of the Jak pathway in brain development was investigated in NPCs derived from neurosphere cultures using Jak2 and Jak3 small interfering RNAs and specific inhibitors. Jak2 inhibition profoundly decreased NPC proliferation, preventing further differentiation into neurons and glial cells. However, Jak3 inhibition induced neuronal differentiation accompanied by neurite growth. This phenomenon was due to the Jak3 inhibition-mediated induction of neurogenin (Ngn)2 and NeuroD in NPCs. Jak3 inhibition induced NPCs to differentiate into scattered neurons and increased the expression of Tuj1, microtubule associated protein 2 (MAP2), Olig2, and neuroglial protein (NG)2, but decreased glial fibrillary acidic protein (GFAP) expression, with predominant neurogenesis/polydendrogenesis compared with astrogliogenesis. Therefore, Jak2 may be important for NPC proliferation and maintenance, whereas knocking-down of Jak3 signaling is essential for NPC differentiation into neurons and oligodendrocytes but does not lead to astrocyte differentiation. These results suggest that NPC proliferation and differentiation are differentially regulated by the Jak pathway.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Janus Quinase 3/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Western Blotting , Encéfalo/embriologia , Encéfalo/metabolismo , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Imuno-Histoquímica , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/genética , Camundongos , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Neurônios/efeitos dos fármacos , Quinazolinas/farmacologia , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/efeitos dos fármacos , Tirfostinas/farmacologia
13.
Exp Neurobiol ; 30(3): 203-212, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34230222

RESUMO

The inducible Cre-loxP system provides a useful tool for inducing the selective deletion of genes that are essential for proper development and enables the study of gene functions in properly developed animals. Here, we show that inducible Cre-loxP driven by the Gli1-promoter can induce cell-type-specific deletion of target genes in cerebellar cortical neurons. We used reporter mice containing the YFP (yellow fluorescence protein) gene at the Gt(ROSA)26Sor locus with a loxP-flanked transcriptional stop sequence, in which successful Cre-mediated excision of the stop sequence is indicated by YFP expression in Cre-expressing cells. Administration of tamoxifen during early postnatal days (P4~7) induces Cre-dependent excision of stop sequences and allows YFP expression in proliferating neuronal progenitor cells in the external granule layer and Bergmann glia in the Purkinje cell layer. A substantial number of YFP-positive progenitor cells in the external granule layer migrated to the internal granule cell layer and became granule cell neurons. By comparison, injection of tamoxifen during late postnatal days (P19~22) induces YFP expression only in Bergmann glia, and most granule cell neurons were devoid of YFP expression. The results indicate that the Gli1 promoter is temporarily active in progenitor cells in the external granule layer during the early postnatal period but constitutively active in Bergmann glia. We propose that the Gli1-mediated CreER system can be applied for the conditional deletion of genes of interest from cerebellar granule cell neurons and/or Bergmann glia.

14.
Int J Cancer ; 127(8): 1975-83, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20473873

RESUMO

Suicide genes have recently emerged as an attractive alternative therapy for the treatment of various types of intractable cancers. The efficacy of suicide gene therapy relies on efficient gene delivery to target tissues and the localized concentration of final gene products. Here, we showed a potential ex vivo therapy that used mesenchymal stem cells (MSCs) as cellular vehicles to deliver a bacterial suicide gene, cytosine deaminase (CD) to brain tumors. MSCs were engineered to produce CD enzymes at various levels using different promoters. When co-cultured, CD-expressing MSCs had a bystander, anti-cancer effect on neighboring C6 glioma cells in proportion to the levels of CD enzymes that could convert a nontoxic prodrug, 5-fluorocytosine (5-FC) into cytotoxic 5-fluorouracil (5-FU) in vitro. Consistent with the in vitro results, for early stage brain tumors induced by intracranial inoculation of C6 cells, transplantation of CD-expressing MSCs reduced tumor mass in proportion to 5-FC dosages. However, for later stage, established tumors, a single treatment was insufficient, but only multiple transplantations were able to successfully repress tumor growth. Our findings indicate that the level of total CD enzyme activity is a critical parameter that is likely to affect the clinical efficacy for CD gene therapy. Our results also highlight the potential advantages of autograftable MSCs compared with other types of allogeneic stem cells for the treatment of recurrent glioblastomas through repetitive treatments.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/prevenção & controle , Citosina Desaminase/metabolismo , Terapia Genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/enzimologia , Adolescente , Animais , Neoplasias Encefálicas/metabolismo , Efeito Espectador , Criança , Cromatografia Líquida de Alta Pressão , Flucitosina/metabolismo , Fluoruracila/metabolismo , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Células Tumorais Cultivadas
15.
Mol Cell Neurosci ; 40(1): 50-61, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18848628

RESUMO

Disabled 1 (Dab1), a cytoplasmic adaptor protein expressed predominantly in the CNS, transduces a Reelin-initiated signaling that controls neuronal migration and positioning during brain development. To determine the role of Dab1 in neural stem cell (NSC) differentiation, we established a culture of neurospheres derived from the embryonic forebrain of the Dab1(-/-) mice, yotari. Differentiating Dab1(-/-) neurospheres exhibited a higher expression of GFAP, an astrocytic marker, at the expense of neuronal markers. Under Dab1-deficient condition, the expression of NeuroD, a transcription factor for neuronal differentiation, was decreased and the JAK-STAT pathway was evidently increased during differentiation of NSC, suggesting the possible involvement of Dab1 in astrocyte differentiation via JAK-STAT pathway. Notably, expression of neural and glial markers and the level of JAK-STAT signaling molecules were not changed in differentiating NSC by Reelin treatment, indicating that differentiation of NSC is Reelin-independent. Immunohistochemical analyses showed a decrease in the number of neurons and an increase in the number of GFAP-positive cells in developing yotari brains. Our results suggest that Dab1 participates in the differentiation of NSCs into a specific cell lineage, thereby maintaining a balance between neurogenesis and gliogenesis.


Assuntos
Astrócitos/fisiologia , Diferenciação Celular/fisiologia , Janus Quinases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Fatores de Transcrição STAT/metabolismo , Células-Tronco/fisiologia , Animais , Astrócitos/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Técnicas de Cultura de Células , Linhagem da Célula , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Janus Quinases/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Nestina , Neurônios/citologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína Reelina , Fatores de Transcrição STAT/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Células-Tronco/citologia
16.
Mol Cells ; 43(6): 539-550, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32597394

RESUMO

Glioblastoma multiforme (GBM) is a fatal malignant tumor that is characterized by diffusive growth of tumor cells into the surrounding brain parenchyma. However, the diffusive nature of GBM and its relationship with the tumor microenvironment (TME) is still unknown. Here, we investigated the interactions of GBM with the surrounding microenvironment in orthotopic xenograft animal models using two human glioma cell lines, U87 and LN229. The GBM cells in our model showed different features on the aspects of cell growth rate during their development, dispersive nature of glioma tumor cells along blood vessels, and invasion into the brain parenchyma. Our results indicated that these differences in the two models are in part due to differences in the expression of CXCR4 and STAT3, both of which play an important role in tumor progression. In addition, the GBM shows considerable accumulation of resident microglia and peripheral macrophages, but polarizes differently into tumor-supporting cells. These results suggest that the intrinsic factors of GBM and their interaction with the TME determine the diffusive nature and probably the responsiveness to non-cancer cells in the TME.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptores CXCR4/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Polaridade Celular/efeitos dos fármacos , Proliferação de Células , Quimiocina CXCL12/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/irrigação sanguínea , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Imageamento por Ressonância Magnética , Camundongos Endogâmicos BALB C , Camundongos Nus , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Invasividade Neoplásica , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos
17.
Int J Stem Cells ; 13(1): 127-141, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31887850

RESUMO

BACKGROUND AND OBJECTIVES: Stem cell therapy is a promising strategy for treating neurological diseases but its effectiveness is influenced by the route of administration and the characteristics of the stem cells. We determined whether neural induction of mesenchymal stem cells (MSCs) was beneficial when the cells were delivered intra-arterially through the carotid artery. METHODS AND RESULTS: MSCs were neurally induced using a retroviral vector expressing the neurogenic transcription factor neurogenin-1 (Ngn1). The LacZ gene encoding bacterial ß-galactosidase was used as a control. Ischemic stroke was induced by transluminal occlusion of the middle cerebral artery and 3 days later the MSCs were delivered intra-arterially through the internal carotid artery. Magnetic resonance imaging analysis indicated that compared to MSCs expressing LacZ (MSCs/LacZ), MSCs expressing Ngn1 (MSCs/Ngn1) exhibited increased recruitment to the ischemic region and populated this area for a longer duration. Immunohistochemical analysis indicated that compared to MSCs/LacZ, MSCs/Ngn1 more effectively alleviated neurological dysfunction by blocking secondary damage associated with neuronal cell death and brain inflammation. Microarray and real-time PCR analysis indicated that MSCs/Ngn1 exhibited increased expression of chemotactic cytokine receptors, adherence to endothelial cells, and migration ability. CONCLUSIONS: Neural induction with Ngn1 increases the homing ability of MSCs, enhancing their engraftment efficiency in the ischemic rat brain. Intra-arterial delivery of neurally induced MSCs/Ngn1 3 days after ischemic injury blocks neuronal cell death and inflammation, and improves functional recovery. Thus, intra-arterial administration of stem cells with neural properties may be a novel therapy for the treatment of ischemic stroke.

18.
Am J Cancer Res ; 10(5): 1429-1441, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509389

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor, and current standard therapy provides modest improvements in progression-free and overall survival of patients. Innate tumor resistance and presence of the blood-brain barrier (BBB) require the development of multi-modal therapeutic regimens. Previously, cytosine deaminase (CD)-expressing mesenchymal stem cells (MSC/CD) were found to exhibit anticancer activity with a wide therapeutic index by converting 5-fluorocytosine (5-FC), a nontoxic prodrug into 5-fluorouracil (5-FU), a potent anticancer drug. In this study, we evaluated the efficacy of MSC/CD in a multi-modal combination regimen with temozolomide (TMZ). Cell viability test, cell cycle, and normalized isobologram analyses were performed. In vivo anticancer effects were tested in a mouse orthotopic glioma model. TMZ and MSC/CD with 5-FC synergistically interacted and suppressed U87 glioma cell line growth in vitro. Combined treatment with TMZ and 5-FU increased cell cycle arrest and DNA breakage. In an orthotopic xenograft mouse model, treatment with TMZ alone suppressed tumor growth; however, this effect was more intense with MSC/CD transplantation followed by the sequential treatment with 5-FC and TMZ. Therefore, we propose that sequential treatment with 5-FC and MSC/CD can be used in patients with GBM during the immediate postoperative period to sensitize tumors to subsequent adjuvant chemo- and radiotherapy.

19.
Exp Neurobiol ; 29(3): 189-206, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606250

RESUMO

Neurogenic differentiation 1 (NeuroD1) is a class B basic helix-loop-helix (bHLH) transcription factor and regulates differentiation and survival of neuronal and endocrine cells by means of several protein kinases, including extracellular signal-regulated kinase (ERK). However, the effect of phosphorylation on the functions of NeuroD1 by ERK has sparked controversy based on context-dependent differences across diverse species and cell types. Here, we evidenced that ERK-dependent phosphorylation controlled the stability of NeuroD1 and consequently, regulated proneural activity in neuronal cells. A null mutation at the ERK-dependent phosphorylation site, S274A, increased the half-life of NeuroD1 by blocking its ubiquitin-dependent proteasomal degradation. The S274A mutation did not interfere with either the nuclear translocation of NeuroD1 or its heterodimerization with E47, its ubiquitous partner and class A bHLH transcription factor. However, the S274A mutant increased transactivation of the E-box-mediated gene and neurite outgrowth in F11 neuroblastoma cells, compared to the wild-type NeuroD1. Transcriptome and Gene Ontology enrichment analyses indicated that genes involved in axonogenesis and dendrite development were downregulated in NeuroD1 knockout (KO) mice. Overexpression of the S274A mutant salvaged neurite outgrowth in NeuroD1-deficient mice, whereas neurite outgrowth was minimal with S274D, a phosphomimicking mutant. Our data indicated that a longer protein half-life enhanced the overall activity of NeuroD1 in stimulating downstream genes and neuronal differentiation. We propose that blocking ubiquitin-dependent proteasomal degradation may serve as a strategy to promote neuronal activity by stimulating the expression of neuron-specific genes in differentiating neurons.

20.
Proteomics ; 9(18): 4389-405, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19655310

RESUMO

Mesenchymal stem cells (MSCs) are multipotent cells, which have the capability to differentiate into various mesenchymal tissues such as bone, cartilage, fat, tendon, muscle, and marrow stroma. However, they lose the capability of multi-lineage differentiation after several passages. It is known that basic fibroblast growth factor (bFGF) increases growth rate, differentiation potential, and morphological changes of MSCs in vitro. In this report, we have used 2-DE coupled to MS to identify differentially expressed proteins at the cell membrane level in MSCs growing in bFGF containing medium. The cell surface proteins isolated by the biotin-avidin affinity column were separated by 2-DE in triplicate experiments. A total of 15 differentially expressed proteins were identified by quadrupole-time of flight tandem MS. Nine of the proteins were upregulated and six proteins were downregulated in the MSCs cultured with bFGF containing medium. The expression level of three actin-related proteins, F-actin-capping protein subunit alpha-1, actin-related protein 2/3 complex subunit 2, and myosin regulatory light chain 2, was confirmed by Western blot analysis. The results indicate that the expression levels of F-actin-capping protein subunit alpha-1, actin-related protein 2/3 complex subunit 2, and myosin regulatory light chain 2 are important in bFGF-induced morphological change of MSCs.


Assuntos
Células da Medula Óssea/citologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Proteínas de Membrana/biossíntese , Células-Tronco Mesenquimais/metabolismo , Proteômica/métodos , Actinas/metabolismo , Western Blotting , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas , Meios de Cultura , Eletroforese em Gel Bidimensional , Humanos , Imuno-Histoquímica , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteínas/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA