Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Kidney Int ; 105(5): 1049-1057, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401706

RESUMO

Focal segmental glomerulosclerosis (FSGS) lesions have been linked to variants in COL4A3/A4/A5 genes, which are also mutated in Alport syndrome. Although it could be useful for diagnosis, quantitative evaluation of glomerular basement membrane (GBM) type IV collagen (colIV) networks is not widely used to assess these patients. To do so, we developed immunofluorescence imaging for collagen α5(IV) and α1/2(IV) on kidney paraffin sections with Airyscan confocal microscopy that clearly distinguishes GBM collagen α3α4α5(IV) and α1α1α2(IV) as two distinct layers, allowing quantitative assessment of both colIV networks. The ratios of collagen α5(IV):α1/2(IV) mean fluorescence intensities (α5:α1/2 intensity ratios) and thicknesses (α5:α1/2 thickness ratios) were calculated to represent the levels of collagen α3α4α5(IV) relative to α1α1α2(IV). The α5:α1/2 intensity and thickness ratios were comparable across all 11 control samples, while both ratios were significantly and markedly decreased in all patients with pathogenic or likely pathogenic Alport COL4A variants, supporting validity of this approach. Thus, with further validation of this technique, quantitative measurement of GBM colIV subtype abundance by immunofluorescence, may potentially serve to identify the subgroup of patients with FSGS lesions likely to harbor pathogenic COL4A variants who could benefit from genetic testing.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrite Hereditária , Humanos , Membrana Basal Glomerular/patologia , Colágeno Tipo IV/genética , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Parafina , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Membrana Basal/patologia
2.
J Am Soc Nephrol ; 33(1): 155-173, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758982

RESUMO

BACKGROUND: Actin stress fibers are abundant in cultured cells, but little is known about them in vivo. In podocytes, much evidence suggests that mechanobiologic mechanisms underlie podocyte shape and adhesion in health and in injury, with structural changes to actin stress fibers potentially responsible for pathologic changes to cell morphology. However, this hypothesis is difficult to rigorously test in vivo due to challenges with visualization. A technology to image the actin cytoskeleton at high resolution is needed to better understand the role of structures such as actin stress fibers in podocytes. METHODS: We developed the first visualization technique capable of resolving the three-dimensional cytoskeletal network in mouse podocytes in detail, while definitively identifying the proteins that comprise this network. This technique integrates membrane extraction, focused ion-beam scanning electron microscopy, and machine learning image segmentation. RESULTS: Using isolated mouse glomeruli from healthy animals, we observed actin cables and intermediate filaments linking the interdigitated podocyte foot processes to newly described contractile actin structures, located at the periphery of the podocyte cell body. Actin cables within foot processes formed a continuous, mesh-like, electron-dense sheet that incorporated the slit diaphragms. CONCLUSIONS: Our new technique revealed, for the first time, the detailed three-dimensional organization of actin networks in healthy podocytes. In addition to being consistent with the gel compression hypothesis, which posits that foot processes connected by slit diaphragms act together to counterbalance the hydrodynamic forces across the glomerular filtration barrier, our data provide insight into how podocytes respond to mechanical cues from their surrounding environment.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Imageamento Tridimensional/métodos , Aprendizado de Máquina , Microscopia Eletrônica , Podócitos/ultraestrutura , Animais , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
3.
Am J Physiol Renal Physiol ; 321(1): F12-F25, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34029143

RESUMO

Synaptopodin (Synpo) is an actin-associated protein in podocyte foot processes. By generating mice that completely lack Synpo, we previously showed that Synpo is dispensable for normal kidney function. However, lack of Synpo worsened adriamycin-induced nephropathy, indicating a protective role for Synpo in injured podocytes. Here, we investigated whether lack of Synpo directly impacts a genetic disease, Alport syndrome (AS), because Synpo is reduced in podocytes of affected humans and mice; whether this is merely an association or pathogenic is unknown. We used collagen type IV-α5 (Col4a5) mutant mice, which model X-linked AS, showing glomerular basement membrane (GBM) abnormalities, eventual foot process effacement, and progression to end-stage kidney disease. We intercrossed mice carrying mutations in Synpo and Col4a5 to produce double-mutant mice. Urine and tissue were taken at select time points to evaluate albuminuria, histopathology, and glomerular capillary wall composition and ultrastructure. Lack of Synpo in Col4a5-/Y, Col4a5-/-, or Col4a5+/- Alport mice led to the acceleration of disease progression, including more severe proteinuria and glomerulosclerosis. Absence of Synpo attenuated the shift of myosin IIA from the podocyte cell body and major processes to actin cables near the GBM in the areas of effacement. We speculate that this is mechanistically associated with enhanced loss of podocytes due to easier detachment from the GBM. We conclude that Synpo deletion exacerbates the disease phenotype in Alport mice, revealing the podocyte actin cytoskeleton as a target for therapy in patients with AS.NEW & NOTEWORTHY Alport syndrome (AS) is a hereditary disease of the glomerular basement with hematuria and proteinuria. Podocytes eventually exhibit foot process effacement, indicating actin cytoskeletal changes. To investigate how cytoskeletal changes impact podocytes, we generated Alport mice lacking synaptopodin, an actin-binding protein in foot processes. Analysis showed a more rapid disease progression, demonstrating that synaptopodin is protective. This suggests that the actin cytoskeleton is a target for therapy in AS and perhaps other glomerular diseases.


Assuntos
Nefropatias/genética , Proteínas dos Microfilamentos/deficiência , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animais , Modelos Animais de Doenças , Membrana Basal Glomerular/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo
4.
J Am Soc Nephrol ; 31(12): 2815-2832, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32938649

RESUMO

BACKGROUND: Synaptopodin (Synpo) is an actin-associated protein in podocytes and dendritic spines. Many functions in regulating the actin cytoskeleton via RhoA and other pathways have been ascribed to Synpo, yet no pathogenic mutations in the SYNPO gene have been discovered in patients. Naturally occurring Synpo isoforms are known (Synpo-short and -long), and a novel truncated version (Synpo-T) is upregulated in podocytes from Synpo mutant mice. Synpo-T maintains some Synpo functions, which may prevent a podocyte phenotype from emerging in unchallenged mutant mice. METHODS: Novel mouse models were generated to further investigate the functions of Synpo. In one, CRISPR/Cas9 deleted most of the Synpo gene, preventing production of any detectable Synpo protein. Two other mutant strains made truncated versions of the protein. Adriamycin injections were used to challenge the mice, and Synpo functions were investigated in primary cultured podocytes. RESULTS: Mice that could not make detectable Synpo (Synpo-/- ) did not develop any kidney abnormalities up to 12 months of age. However, Synpo-/- mice were more susceptible to Adriamycin nephropathy. In cultured primary podocytes from mutant mice, the absence of Synpo caused loss of stress fibers, increased the number and size of focal adhesions, and impaired cell migration. Furthermore, loss of Synpo led to decreased RhoA activity and increased Rac1 activation. CONCLUSIONS: In contrast to previous findings, podocytes can function normally in vivo in the absence of any Synpo isoform. Synpo plays a protective role in the context of podocyte injury through its involvement in actin reorganization and focal adhesion dynamics.


Assuntos
Homeostase/fisiologia , Nefropatias/etiologia , Proteínas dos Microfilamentos/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Animais , Adesão Celular/fisiologia , Técnicas de Cultura de Células , Movimento Celular/fisiologia , Modelos Animais de Doenças , Nefropatias/metabolismo , Nefropatias/patologia , Camundongos
5.
J Am Soc Nephrol ; 29(5): 1426-1436, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29472414

RESUMO

Background Laminin α5ß2γ1 (LM-521) is a major component of the GBM. Mutations in LAMB2 that prevent LM-521 synthesis and/or secretion cause Pierson syndrome, a rare congenital nephrotic syndrome with diffuse mesangial sclerosis and ocular and neurologic defects. Because the GBM is uniquely accessible to plasma, which permeates endothelial cell fenestrae, we hypothesized that intravenous delivery of LM-521 could replace the missing LM-521 in the GBM of Lamb2 mutant mice and restore glomerular permselectivity.Methods We injected human LM-521 (hLM-521), a macromolecule of approximately 800 kD, into the retro-orbital sinus of Lamb2-/- pups daily. Deposition of hLM-521 into the GBM was investigated by fluorescence microscopy. We assayed the effects of hLM-521 on glomerular permselectivity by urinalysis and the effects on podocytes by desmin immunostaining and ultrastructural analysis of podocyte architecture.Results Injected hLM-521 rapidly and stably accumulated in the GBM of all glomeruli. Super-resolution imaging showed that hLM-521 accumulated in the correct orientation in the GBM, primarily on the endothelial aspect. Treatment with hLM-521 greatly reduced the expression of the podocyte injury marker desmin and attenuated the foot process effacement observed in untreated pups. Moreover, treatment with hLM-521 delayed the onset of proteinuria but did not prevent nephrotic syndrome, perhaps due to its absence from the podocyte aspect of the GBM.Conclusions These studies show that GBM composition and function can be altered in vivovia vascular delivery of even very large proteins, which may advance therapeutic options for patients with abnormal GBM composition, whether genetic or acquired.


Assuntos
Anormalidades Múltiplas/tratamento farmacológico , Anormalidades Múltiplas/metabolismo , Anormalidades do Olho/tratamento farmacológico , Anormalidades do Olho/metabolismo , Membrana Basal Glomerular/metabolismo , Laminina/genética , Laminina/uso terapêutico , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/metabolismo , Distúrbios Pupilares/tratamento farmacológico , Distúrbios Pupilares/metabolismo , Anormalidades Múltiplas/genética , Animais , Desmina/metabolismo , Modelos Animais de Doenças , Anormalidades do Olho/complicações , Anormalidades do Olho/genética , Injeções Intravenosas , Laminina/administração & dosagem , Camundongos , Síndromes Miastênicas Congênitas , Síndrome Nefrótica/complicações , Síndrome Nefrótica/etiologia , Síndrome Nefrótica/genética , Permeabilidade/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/ultraestrutura , Proteinúria/etiologia , Proteinúria/prevenção & controle , Distúrbios Pupilares/complicações , Distúrbios Pupilares/genética , Proteínas Recombinantes/uso terapêutico
6.
Artigo em Inglês | MEDLINE | ID: mdl-38715433

RESUMO

Ultrastructure expansion microscopy (U-ExM) involves the physical magnification of specimens embedded in hydrogels, which allows for super-resolution imaging of subcellular structures using a conventional diffraction-limited microscope. Methods for expansion microscopy exist for several organisms, organs, and cell types, and used to analyze cellular organelles and substructures in nanoscale resolution. Here, we describe a simple step-by-step U-ExM protocol for the expansion, immunostaining, imaging, and analysis of cytoskeletal and organellar structures in kidney tissue. We detail the critical modified steps to optimize isotropic kidney tissue expansion, and preservation of the renal cell structures of interest. We demonstrate the utility of the approach using several markers of renal cell types, centrioles, cilia, the extracellular matrix, and other cytoskeletal elements. Finally, we show that the approach works well on mouse and human kidney samples that were preserved using different fixation and embedding conditions. Overall, this protocol provides a simple and cost-effective approach to analyze both preclinical and clinical renal samples in high detail, using conventional lab supplies and standard widefield or confocal microscopy.

7.
bioRxiv ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38405695

RESUMO

Ultrastructure expansion microscopy (U-ExM) involves the physical magnification of specimens embedded in hydrogels, which allows for super-resolution imaging of subcellular structures using a conventional diffraction-limited microscope. Methods for expansion microscopy exist for several organisms, organs, and cell types, and used to analyze cellular organelles and substructures in nanoscale resolution. Here, we describe a simple step-by-step U-ExM protocol for the expansion, immunostaining, imaging, and analysis of cytoskeletal and organellar structures in kidney tissue. We detail the critical modified steps to optimize isotropic kidney tissue expansion, and preservation of the renal cell structures of interest. We demonstrate the utility of the approach using several markers of renal cell types, centrioles, cilia, the extracellular matrix, and other cytoskeletal elements. Finally, we show that the approach works well on mouse and human kidney samples that were preserved using different fixation and storage conditions. Overall, this protocol provides a simple and cost-effective approach to analyze both pre-clinical and clinical renal samples in high detail, using conventional lab supplies and standard widefield or confocal microscopy.

8.
Sci Adv ; 8(35): eabn6027, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044576

RESUMO

Chronic kidney diseases are widespread and incurable. The biophysical mechanisms underlying them are unclear, in part because material systems for reconstituting the microenvironment of relevant kidney cells are limited. A critical question is how kidney podocytes (glomerular epithelial cells) regenerate foot processes of the filtration apparatus following injury. Recently identified sarcomere-like structures (SLSs) with periodically spaced myosin IIA and synaptopodin appear in injured podocytes in vivo. We hypothesized that SLSs template synaptopodin in the initial stages of recovery in response to microenvironmental stimuli and tested this hypothesis by developing an ex vivo culture system that allows control of the podocyte microenvironment. Results supported our hypothesis. SLSs in podocytes that migrated from isolated kidney glomeruli presented periodic synaptopodin-positive clusters that nucleated peripheral, foot process-like extensions. SLSs were mechanoresponsive to actomyosin inhibitors and substrate stiffness. Results suggest SLSs as mechanobiological mediators of podocyte recovery and as potential targets for therapeutic intervention.


Assuntos
Nefropatias , Podócitos , Células Epiteliais , Humanos , Rim , Sarcômeros
9.
JCI Insight ; 2(16)2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28814668

RESUMO

The architectural integrity of tissues requires complex interactions, both between cells and between cells and the extracellular matrix. Fundamental to cell and tissue homeostasis are the specific mechanical forces conveyed by the actomyosin cytoskeleton. Here we used super-resolution imaging methods to visualize the actin cytoskeleton in the kidney glomerulus, an organized collection of capillaries that filters the blood to make the primary urine. Our analysis of both mouse and human glomeruli reveals a network of myosin IIA-containing contractile actin cables within podocyte cell bodies and major processes at the outer aspects of the glomerular tuft. These likely exert force on an underlying network of myosin IIA-negative, noncontractile actin fibers present within podocyte foot processes that function to both anchor the cells to the glomerular basement membrane and stabilize the slit diaphragm against the pressure of fluid flow. After injuries that disrupt the kidney filtration barrier and cause foot process effacement, the podocyte's contractile actomyosin network relocates to the basolateral surface of the cell, manifesting as sarcomere-like structures juxtaposed to the basement membrane. Our findings suggest a new model of the podocyte actin cytoskeleton in health and disease and suggest the existence of novel mechanisms that regulate podocyte architecture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA