Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
FASEB J ; 37(9): e23139, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37584631

RESUMO

Mutations in POLG, the gene encoding the catalytic subunit of the mitochondrial DNA (mtDNA) polymerase gamma (Pol-γ), lead to diseases driven by defective mtDNA maintenance. Despite being the most prevalent cause of mitochondrial disease, treatments for POLG-related disorders remain elusive. In this study, we used POLG patient-induced pluripotent stem cell (iPSC)-derived neural stem cells (iNSCs), one homozygous for the POLG mutation c.2243G>C and one compound heterozygous with c.2243G>C and c.1399G>A, and treated these iNSCs with ethidium bromide (EtBr) to study the rate of depletion and repopulation of mtDNA. In addition, we investigated the effect of deoxyribonucleoside (dNs) supplementation on mtDNA maintenance during EtBr treatment and post-treatment repopulation in the same cells. EtBr-induced mtDNA depletion occurred at a similar rate in both patient and control iNSCs, however, restoration of mtDNA levels was significantly delayed in iNSCs carrying the compound heterozygous POLG mutations. In contrast, iNSC with the homozygous POLG mutation recovered their mtDNA at a rate similar to controls. When we treated cells with dNs, we found that this reduced EtBr-induced mtDNA depletion and significantly increased repopulation rates in both patient iNSCs. These observations are consistent with the hypothesis that mutations in POLG impair mtDNA repopulation also within intact neural lineage cells and suggest that those with compound heterozygous mutation have a more severe defect of mtDNA synthesis. Our findings further highlight the potential for dNs to improve mtDNA replication in the presence of POLG mutations, suggesting that this may offer a new therapeutic modality for mitochondrial diseases caused by disturbed mtDNA homeostasis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Células-Tronco Neurais , Humanos , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase gama/genética , Etídio/farmacologia , Mutação , DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , Desoxirribonucleosídeos
2.
J Hepatol ; 79(4): 945-954, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37328071

RESUMO

BACKGROUND & AIMS: Lymphedema cholestasis syndrome 1 or Aagenaes syndrome is a condition characterized by neonatal cholestasis, lymphedema, and giant cell hepatitis. The genetic background of this autosomal recessive disease was unknown up to now. METHODS: A total of 26 patients with Aagenaes syndrome and 17 parents were investigated with whole-genome sequencing and/or Sanger sequencing. PCR and western blot analyses were used to assess levels of mRNA and protein, respectively. CRISPR/Cas9 was used to generate the variant in HEK293T cells. Light microscopy, transmission electron microscopy and immunohistochemistry for biliary transport proteins were performed in liver biopsies. RESULTS: One specific variant (c.-98G>T) in the 5'-untranslated region of Unc-45 myosin chaperone A (UNC45A) was identified in all tested patients with Aagenaes syndrome. Nineteen were homozygous for the c.-98G>T variant and seven were compound heterozygous for the variant in the 5'-untranslated region and an exonic loss-of-function variant in UNC45A. Patients with Aagenaes syndrome exhibited lower expression of UNC45A mRNA and protein than controls, and this was reproduced in a CRISPR/Cas9-created cell model. Liver biopsies from the neonatal period demonstrated cholestasis, paucity of bile ducts and pronounced formation of multinucleated giant cells. Immunohistochemistry revealed mislocalization of the hepatobiliary transport proteins BSEP (bile salt export pump) and MRP2 (multidrug resistance-associated protein 2). CONCLUSIONS: c.-98G>T in the 5'-untranslated region of UNC45A is the causative genetic variant in Aagenaes syndrome. IMPACT AND IMPLICATIONS: The genetic background of Aagenaes syndrome, a disease presenting with cholestasis and lymphedema in childhood, was unknown until now. A variant in the 5'-untranslated region of the Unc-45 myosin chaperone A (UNC45A) was identified in all tested patients with Aagenaes syndrome, providing evidence of the genetic background of the disease. Identification of the genetic background provides a tool for diagnosis of patients with Aagenaes syndrome before lymphedema is evident.


Assuntos
Colestase , Peptídeos e Proteínas de Sinalização Intracelular , Linfedema , Humanos , Recém-Nascido , Regiões 5' não Traduzidas/genética , Proteínas de Transporte/genética , Colestase/genética , Células HEK293 , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linfedema/diagnóstico , Linfedema/genética , Linfedema/metabolismo , Miosinas/genética , Miosinas/metabolismo
3.
Biomater Biosyst ; 14: 100093, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38585282

RESUMO

Recently, it has been recognized that physical abnormalities (e.g. elevated solid stress, elevated interstitial fluid pressure, increased stiffness) are associated with tumor progression and development. Additionally, these mechanical forces originating from tumor cell environment through mechanotransduction pathways can affect metabolism. On the other hand, mitochondria are well-known as bioenergetic, biosynthetic, and signaling organelles crucial for sensing stress and facilitating cellular adaptation to the environment and physical stimuli. Disruptions in mitochondrial dynamics and function have been found to play a role in the initiation and advancement of cancer. Consequently, it is logical to hypothesize that mitochondria dynamics subjected to physical cues may play a pivotal role in mediating tumorigenesis. Recently mitochondrial biogenesis and turnover, fission and fusion dynamics was linked to mechanotransduction in cancer. However, how cancer cell mechanics and mitochondria functions are connected, still remain poorly understood. Here, we discuss recent studies that link mechanical stimuli exerted by the tumor cell environment and mitochondria dynamics and functions. This interplay between mechanics and mitochondria functions may shed light on how mitochondria regulate tumorigenesis.

4.
Adv Sci (Weinh) ; 11(18): e2307136, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38445970

RESUMO

In this research, a 3D brain organoid model is developed to study POLG-related encephalopathy, a mitochondrial disease stemming from POLG mutations. Induced pluripotent stem cells (iPSCs) derived from patients with these mutations is utilized to generate cortical organoids, which exhibited typical features of the diseases with POLG mutations, such as altered morphology, neuronal loss, and mitochondiral DNA (mtDNA) depletion. Significant dysregulation is also identified in pathways crucial for neuronal development and function, alongside upregulated NOTCH and JAK-STAT signaling pathways. Metformin treatment ameliorated many of these abnormalities, except for the persistent affliction of inhibitory dopamine-glutamate (DA GLU) neurons. This novel model effectively mirrors both the molecular and pathological attributes of diseases with POLG mutations, providing a valuable tool for mechanistic understanding and therapeutic screening for POLG-related disorders and other conditions characterized by compromised neuronal mtDNA maintenance and complex I deficiency.


Assuntos
DNA Polimerase gama , Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Organoides , Organoides/metabolismo , Organoides/patologia , Humanos , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo
5.
Int J Biol Sci ; 20(8): 2860-2880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904024

RESUMO

Mitochondrial diseases are associated with neuronal death and mtDNA depletion. Astrocytes respond to injury or stimuli and damage to the central nervous system. Neurodegeneration can cause astrocytes to activate and acquire toxic functions that induce neuronal death. However, astrocyte activation and its impact on neuronal homeostasis in mitochondrial disease remain to be explored. Using patient cells carrying POLG mutations, we generated iPSCs and then differentiated these into astrocytes. POLG astrocytes exhibited mitochondrial dysfunction including loss of mitochondrial membrane potential, energy failure, loss of complex I and IV, disturbed NAD+/NADH metabolism, and mtDNA depletion. Further, POLG derived astrocytes presented an A1-like reactive phenotype with increased proliferation, invasion, upregulation of pathways involved in response to stimulus, immune system process, cell proliferation and cell killing. Under direct and indirect co-culture with neurons, POLG astrocytes manifested a toxic effect leading to the death of neurons. We demonstrate that mitochondrial dysfunction caused by POLG mutations leads not only to intrinsic defects in energy metabolism affecting both neurons and astrocytes, but also to neurotoxic damage driven by astrocytes. These findings reveal a novel role for dysfunctional astrocytes that contribute to the pathogenesis of POLG diseases.


Assuntos
Astrócitos , DNA Polimerase gama , DNA Polimerase Dirigida por DNA , Mitocôndrias , Mutação , Astrócitos/metabolismo , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , Humanos , Mitocôndrias/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Neurônios/metabolismo , Potencial da Membrana Mitocondrial , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Cultivadas , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Técnicas de Cocultura
6.
Int J Biol Sci ; 20(4): 1194-1217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385069

RESUMO

Alpers' syndrome is an early-onset neurodegenerative disorder usually caused by biallelic pathogenic variants in the gene encoding the catalytic subunit of polymerase-gamma (POLG), which is essential for mitochondrial DNA (mtDNA) replication. The disease is progressive, incurable, and inevitably it leads to death from drug-resistant status epilepticus. The neurological features of Alpers' syndrome are intractable epilepsy and developmental regression, with no effective treatment; the underlying mechanisms are still elusive, partially due to lack of good experimental models. Here, we generated the patient derived induced pluripotent stem cells (iPSCs) from one Alpers' patient carrying the compound heterozygous mutations of A467T (c.1399G>A) and P589L (c.1766C>T), and further differentiated them into cortical organoids and neural stem cells (NSCs) for mechanistic studies of neural dysfunction in Alpers' syndrome. Patient cortical organoids exhibited a phenotype that faithfully replicated the molecular changes found in patient postmortem brain tissue, as evidenced by cortical neuronal loss and depletion of mtDNA and complex I (CI). Patient NSCs showed mitochondrial dysfunction leading to ROS overproduction and downregulation of the NADH pathway. More importantly, the NAD+ precursor nicotinamide riboside (NR) significantly ameliorated mitochondrial defects in patient brain organoids. Our findings demonstrate that the iPSC model and brain organoids are good in vitro models of Alpers' disease; this first-in-its-kind stem cell platform for Alpers' syndrome enables therapeutic exploration and has identified NR as a viable drug candidate for Alpers' disease and, potentially, other mitochondrial diseases with similar causes.


Assuntos
Esclerose Cerebral Difusa de Schilder , Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Niacinamida/análogos & derivados , Compostos de Piridínio , Humanos , DNA Polimerase gama , NAD/genética , DNA Mitocondrial/genética , Mutação
7.
Sci Rep ; 13(1): 10818, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402779

RESUMO

Dramatically increased levels of electromagnetic radiation in the environment have raised concerns over the potential health hazards of electromagnetic fields. Various biological effects of magnetic fields have been proposed. Despite decades of intensive research, the molecular mechanisms procuring cellular responses remain largely unknown. The current literature is conflicting with regards to evidence that magnetic fields affect functionality directly at the cellular level. Therefore, a search for potential direct cellular effects of magnetic fields represents a cornerstone that may propose an explanation for potential health hazards associated with magnetic fields. It has been proposed that autofluorescence of HeLa cells is magnetic field sensitive, relying on single-cell imaging kinetic measurements. Here, we investigate the magnetic field sensitivity of an endogenous autofluorescence in HeLa cells. Under the experimental conditions used, magnetic field sensitivity of an endogenous autofluorescence was not observed in HeLa cells. We present a number of arguments indicating why this is the case in the analysis of magnetic field effects based on the imaging of cellular autofluorescence decay. Our work indicates that new methods are required to elucidate the effects of magnetic fields at the cellular level.


Assuntos
Campos Eletromagnéticos , Campos Magnéticos , Humanos , Células HeLa
8.
Exp Neurol ; 365: 114429, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37105450

RESUMO

Diseases caused by POLG mutations are the most common form of mitochondrial diseases and associated with phenotypes of varying severity. Clinical studies have shown that patients with compound heterozygous POLG mutations have a lower survival rate than patients with homozygous mutations, but the molecular mechanisms behind this remain unexplored. Using an induced pluripotent stem cell (iPSC) model, we investigate differences between homozygous and compound heterozygous genotypes in different cell types, including patient-specific fibroblasts, iPSCs, and iPSC-derived neural stem cells (NSCs) and astrocytes. We found that compound heterozygous lines exhibited greater impairment of mitochondrial function in NSCs than homozygous NSCs, but not in fibroblasts, iPSCs, or astrocytes. Compared with homozygous NSCs, compound heterozygous NSCs exhibited more severe functional defects, including reduced ATP production, loss of mitochondrial DNA (mtDNA) copy number and complex I expression, disturbance of NAD+ metabolism, and higher ROS levels, which further led to cellular senescence and activation of mitophagy. RNA sequencing analysis revealed greater downregulation of mitochondrial and metabolic pathways, including the citric acid cycle and oxidative phosphorylation, in compound heterozygous NSCs. Our iPSC-based disease model can be widely used to understand the genotype-phenotype relationship of affected brain cells in mitochondrial diseases, and further drug discovery applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Genótipo , Doenças Mitocondriais/genética , Neuroglia/metabolismo , DNA Polimerase gama/genética
9.
Cell Cycle ; 21(20): 2206-2221, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35815665

RESUMO

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have distinct origins: ESCs are derived from pre-implanted embryos while iPSCs are reprogrammed somatic cells. Both have their own characteristics and lineage specificity, and both are valuable tools for studying human neurological development and disease. Thus far, few studies have analyzed how differences between stem cell types influence mitochondrial function and mitochondrial DNA (mtDNA) homeostasis during differentiation into neural and glial lineages. In this study, we compared mitochondrial function and mtDNA replication in human ESCs and iPSCs at three different stages - pluripotent, neural progenitor and astrocyte. We found that while ESCs and iPSCs have a similar mitochondrial signature, neural and astrocyte derivations manifested differences. At the neural stem cell (NSC) stage, iPSC-NSCs displayed decreased ATP production and a reduction in mitochondrial respiratory chain (MRC) complex IV expression compared to ESC-NSCs. IPSC-astrocytes showed increased mitochondrial activity including elevated ATP production, MRC complex IV expression, mtDNA copy number and mitochondrial biogenesis relative to those derived from ESCs. These findings show that while ESCs and iPSCs are similar at the pluripotent stage, differences in mitochondrial function may develop during differentiation and must be taken into account when extrapolating results from different cell types.Abbreviation: BSA: Bovine serum albumin; DCFDA: 2',7'-dichlorodihydrofluorescein diacetate; DCX: Doublecortin; EAAT-1: Excitatory amino acid transporter 1; ESCs: Embryonic stem cells; GFAP: Glial fibrillary acidic protein; GS: Glutamine synthetase; iPSCs: Induced pluripotent stem cells; LC3B: Microtubule-associated protein 1 light chain 3ß; LC-MS: Liquid chromatography-mass spectrometry; mito-ROS: Mitochondrial ROS; MMP: Mitochondrial membrane potential; MRC: Mitochondrial respiratory chain; mtDNA: Mitochondrial DNA; MTDR: MitoTracker Deep Red; MTG: MitoTracker Green; NSCs: Neural stem cells; PDL: Poly-D-lysine; PFA: Paraformaldehyde; PGC-1α: PPAR-γ coactivator-1 alpha; PPAR-γ: Peroxisome proliferator-activated receptor-gamma; p-SIRT1: Phosphorylated sirtuin 1; p-ULK1: Phosphorylated unc-51 like autophagy activating kinase 1; qPCR: Quantitative PCR; RT: Room temperature; RT-qPCR: Quantitative reverse transcription PCR; SEM: Standard error of the mean; TFAM: Mitochondrial transcription factor A; TMRE: Tetramethylrhodamine ethyl ester; TOMM20: Translocase of outer mitochondrial membrane 20.


Assuntos
Células-Tronco Pluripotentes Induzidas , Trifosfato de Adenosina/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Diferenciação Celular , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas do Domínio Duplacortina , Células-Tronco Embrionárias/metabolismo , Ésteres/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisina/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Soroalbumina Bovina , Sirtuína 1/metabolismo
10.
Cell Cycle ; 21(11): 1178-1193, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35298342

RESUMO

We showed previously that POLG mutations cause major changes in mitochondrial function, including loss of mitochondrial respiratory chain (MRC) complex I, mitochondrial DNA (mtDNA) depletion and an abnormal NAD+/NADH ratio in both neural stem cells (NSCs) and astrocytes differentiated from induced pluripotent stem cells (iPSCs). In the current study, we looked at mitochondrial remodeling as stem cells transit pluripotency and during differentiation from NSCs to both dopaminergic (DA) neurons and astrocytes comparing the process in POLG-mutated and control stem cells. We saw that mitochondrial membrane potential (MMP), mitochondrial volume, ATP production and reactive oxygen species (ROS) changed in similar ways in POLG and control NSCs, but mtDNA replication, MRC complex I and NAD+ metabolism failed to remodel normally. In DA neurons differentiated from NSCs, we saw that POLG mutations caused failure to increase MMP and ATP production and blunted the increase in mtDNA and complex I. Interestingly, mitochondrial remodeling during astrocyte differentiation from NSCs was similar in both POLG-mutated and control NSCs. Further, we showed downregulation of the SIRT3/AMPK pathways in POLG-mutated cells, suggesting that POLG mutations lead to abnormal mitochondrial remodeling in early neural development due to the downregulation of these pathways. [Figure: see text].


Assuntos
DNA Polimerase gama , Células-Tronco Pluripotentes , Sirtuína 3 , Humanos , Trifosfato de Adenosina , Proteínas Quinases Ativadas por AMP , Astrócitos/citologia , Diferenciação Celular , DNA Polimerase gama/genética , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Mitocôndrias/genética , Mutação/genética , NAD , Células-Tronco Neurais/citologia , Sirtuína 3/genética
11.
Front Med (Lausanne) ; 8: 574047, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026769

RESUMO

Liver cell types derived from induced pluripotent stem cells (iPSCs) share the potential to investigate development, toxicity, as well as genetic and infectious disease in ways currently limited by the availability of primary tissue. With the added advantage of patient specificity, which can play a role in all of these areas. Many iPSC differentiation protocols focus on 3 dimensional (3D) or organotypic differentiation, as these offer the advantage of more closely mimicking in vivo systems including; the formation of tissue like architecture and interactions/crosstalk between different cell types. Ultimately such models have the potential to be used clinically and either with or more aptly, in place of animal models. Along with the development of organotypic and micro-tissue models, there will be a need to co-develop imaging technologies to enable their visualization. A variety of liver models termed "organoids" have been reported in the literature ranging from simple spheres or cysts of a single cell type, usually hepatocytes, to those containing multiple cell types combined during the differentiation process such as hepatic stellate cells, endothelial cells, and mesenchymal cells, often leading to an improved hepatic phenotype. These allow specific functions or readouts to be examined such as drug metabolism, protein secretion or an improved phenotype, but because of their relative simplicity they lack the flexibility and general applicability of ex vivo tissue culture. In the liver field these are more often constructed rather than developed together organotypically as seen in other organoid models such as brain, kidney, lung and intestine. Having access to organotypic liver like surrogates containing multiple cell types with in vivo like interactions/architecture, would provide vastly improved models for disease, toxicity and drug development, combining disciplines such as microfluidic chip technology with organoids and ultimately paving the way to new therapies.

12.
Front Cell Dev Biol ; 9: 737304, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631714

RESUMO

Mitophagy specifically recognizes and removes damaged or superfluous mitochondria to maintain mitochondrial homeostasis and proper neuronal function. Defective mitophagy and the resulting accumulation of damaged mitochondria occur in several neurodegenerative diseases. Previously, we showed mitochondrial dysfunction in astrocytes with POLG mutations, and here, we examined how POLG mutations affect mitophagy in astrocytes and how this can be ameliorated pharmacologically. Using induced pluripotent stem cell (iPSC)-derived astrocytes carrying POLG mutations, we found downregulation of mitophagy/autophagy-related genes using RNA sequencing-based KEGG metabolic pathway analysis. We confirmed a deficit in mitochondrial autophagosome formation under exogenous stress conditions and downregulation of the mitophagy receptor p62, reduced lipidation of LC3B-II, and decreased expression of lysosome protein lysosomal-associated membrane protein 2A (LAMP2A). These changes were regulated by the PINK1/Parkin pathway and AKT/mTOR/AMPK/ULK1 signaling pathways. Importantly, we found that double treatment with nicotinamide riboside (NR) and metformin rescued mitophagy defects and mitochondrial dysfunction in POLG-mutant astrocytes. Our findings reveal that impaired mitophagy is involved in the observed mitochondrial dysfunction caused by POLG mutations in astrocytes, potentially contributing to the phenotype in POLG-related diseases. This study also demonstrates the therapeutic potential of NR and metformin in these incurable mitochondrial diseases.

13.
Exp Neurol ; 337: 113536, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33264635

RESUMO

The inability to reliably replicate mitochondrial DNA (mtDNA) by mitochondrial DNA polymerase gamma (POLG) leads to a subset of common mitochondrial diseases associated with neuronal death and depletion of neuronal mtDNA. Defining disease mechanisms in neurons remains difficult due to the limited access to human tissue. Using human induced pluripotent stem cells (hiPSCs), we generated functional dopaminergic (DA) neurons showing positive expression of dopaminergic markers TH and DAT, mature neuronal marker MAP2 and functional synaptic markers synaptophysin and PSD-95. These DA neurons were electrophysiologically characterized, and exhibited inward Na + currents, overshooting action potentials and spontaneous postsynaptic currents (sPSCs). POLG patient-specific DA neurons (POLG-DA neurons) manifested a phenotype that replicated the molecular and biochemical changes found in patient post-mortem brain samples namely loss of complex I and depletion of mtDNA. Compared to disease-free hiPSC-derived DA neurons, POLG-DA neurons exhibited loss of mitochondrial membrane potential, loss of complex I and loss of mtDNA and TFAM expression. POLG driven mitochondrial dysfunction also led to neuronal ROS overproduction and increased cellular senescence. This deficit was selectively rescued by treatment with N-acetylcysteine amide (NACA). In conclusion, our study illustrates the promise of hiPSC technology for assessing pathogenetic mechanisms associated with POLG disease, and that NACA can be a promising potential therapy for mitochondrial diseases such as those caused by POLG mutation.


Assuntos
Acetilcisteína/análogos & derivados , Antioxidantes/uso terapêutico , DNA Polimerase gama/genética , Neurônios Dopaminérgicos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/uso terapêutico , Potenciais de Ação , Senescência Celular/genética , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/metabolismo , Potenciais Pós-Sinápticos Excitadores , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Canais de Sódio/metabolismo
14.
EMBO Mol Med ; 12(10): e12146, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32840960

RESUMO

Mutations in POLG disrupt mtDNA replication and cause devastating diseases often with neurological phenotypes. Defining disease mechanisms has been hampered by limited access to human tissues, particularly neurons. Using patient cells carrying POLG mutations, we generated iPSCs and then neural stem cells. These neural precursors manifested a phenotype that faithfully replicated the molecular and biochemical changes found in patient post-mortem brain tissue. We confirmed the same loss of mtDNA and complex I in dopaminergic neurons generated from the same stem cells. POLG-driven mitochondrial dysfunction led to neuronal ROS overproduction and increased cellular senescence. Loss of complex I was associated with disturbed NAD+ metabolism with increased UCP2 expression and reduced phosphorylated SirT1. In cells with compound heterozygous POLG mutations, we also found activated mitophagy via the BNIP3 pathway. Our studies are the first that show it is possible to recapitulate the neuronal molecular and biochemical defects associated with POLG mutation in a human stem cell model. Further, our data provide insight into how mitochondrial dysfunction and mtDNA alterations influence cellular fate determining processes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , DNA Polimerase gama/genética , DNA Mitocondrial/genética , Humanos , Mutação , Fenótipo
15.
Sci Rep ; 9(1): 12934, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506459

RESUMO

Valve interstitial cells (VICs) are crucial in the development of calcific aortic valve disease. The purpose of the present investigation was to compare the phenotype, differentiation potential and stem cell-like properties of cells from calcified and healthy aortic valves. VICs were isolated from human healthy and calcified aortic valves. Calcification was induced with osteogenic medium. Unlike VICs from healthy valves, VICs from calcified valves cultured without osteogenic medium stained positively for calcium deposits with Alizarin Red confirming their calcific phenotype. Stimulation of VICs from calcified valves with osteogenic medium increased calcification (p = 0.02), but not significantly different from healthy VICs. When stimulated with myofibroblastic medium, VICs from calcified valves had lower expression of myofibroblastic markers, measured by flow cytometry and RT-qPCR, compared to healthy VICs. Contraction of collagen gel (a measure of myofibroblastic activity) was attenuated in cells from calcified valves (p = 0.04). Moreover, VICs from calcified valves, unlike cells from healthy valves had lower potential to differentiate into adipogenic pathway and lower expression of stem cell-associated markers CD106 (p = 0.04) and aldehyde dehydrogenase (p = 0.04). In conclusion, VICs from calcified aortic have reduced multipotency compared to cells from healthy valves, which should be considered when investigating possible medical treatments of aortic valve calcification.


Assuntos
Estenose da Valva Aórtica/patologia , Valva Aórtica/patologia , Biomarcadores/análise , Calcinose/patologia , Diferenciação Celular , Cardiopatias Congênitas/patologia , Doenças das Valvas Cardíacas/patologia , Células Intersticiais de Cajal/patologia , Osteogênese , Células-Tronco/patologia , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Doença da Válvula Aórtica Bicúspide , Calcinose/genética , Calcinose/metabolismo , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/metabolismo , Humanos , Células Intersticiais de Cajal/metabolismo , Masculino , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Células-Tronco/metabolismo
16.
Front Physiol ; 9: 1635, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524301

RESUMO

Background: Aortic valve calcification is an active proliferative process, where interstitial cells of the valve transform into either myofibroblasts or osteoblast-like cells causing valve deformation, thickening of cusps and finally stenosis. This process may be triggered by several factors including inflammation, mechanical stress or interaction of cells with certain components of extracellular matrix. The matrix is different on the two sides of the valve leaflets. We hypothesize that inflammation and mechanical stress stimulate osteogenic differentiation of human aortic valve interstitial cells (VICs) and this may depend on the side of the leaflet. Methods: Interstitial cells isolated from healthy and calcified human aortic valves were cultured on collagen or elastin coated plates with flexible bottoms, simulating the matrix on the aortic and ventricular side of the valve leaflets, respectively. The cells were subjected to 10% stretch at 1 Hz (FlexCell bioreactor) or treated with 0.1 µg/ml lipopolysaccharide, or both during 24 h. Gene expression of myofibroblast- and osteoblast-specific genes was analyzed by qPCR. VICs cultured in presence of osteogenic medium together with lipopolysaccharide, 10% stretch or both for 14 days were stained for calcification using Alizarin Red. Results: Treatment with lipopolysaccharide increased expression of osteogenic gene bone morphogenetic protein 2 (BMP2) (5-fold increase from control; p = 0.02) and decreased expression of mRNA of myofibroblastic markers: α-smooth muscle actin (ACTA2) (50% reduction from control; p = 0.0006) and calponin (CNN1) (80% reduction from control; p = 0.0001) when cells from calcified valves were cultured on collagen, but not on elastin. Mechanical stretch of VICs cultured on collagen augmented the effect of lipopolysaccharide. Expression of periostin (POSTN) was inhibited in cells from calcified donors after treatment with lipopolysaccharide on collagen (70% reduction from control, p = 0.001), but not on elastin. Lipopolysaccharide and stretch both enhanced the pro-calcific effect of osteogenic medium, further increasing the effect when combined for cells cultured on collagen, but not on elastin. Conclusion: Inflammation and mechanical stress trigger expression of osteogenic genes in VICs in a side-specific manner, while inhibiting the myofibroblastic pathway. Stretch and lipopolysaccharide synergistically increase calcification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA