Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 168(1-2): 86-100.e15, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-27916275

RESUMO

Type 1 diabetes is characterized by the destruction of pancreatic ß cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types, including glucagon-producing α cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of α cells to functional ß-like cells. Here, we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalarial drugs and that the mechanism of action of these molecules depends on the enhancement of GABAA receptor signaling. Our results in zebrafish, rodents, and primary human pancreatic islets identify gephyrin as a druggable target for the regeneration of pancreatic ß cell mass from α cells.


Assuntos
Artemisininas/farmacologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Modelos Animais de Doenças , Receptores de GABA-A/metabolismo , Transdução de Sinais , Animais , Artemeter , Artemisininas/administração & dosagem , Proteínas de Transporte/metabolismo , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus Tipo 1/patologia , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos , Estabilidade Proteica/efeitos dos fármacos , Ratos , Análise de Célula Única , Fatores de Transcrição/metabolismo , Peixe-Zebra , Ácido gama-Aminobutírico/metabolismo
2.
J Pharmacol Exp Ther ; 375(2): 349-356, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32873624

RESUMO

The aim of this work was to evaluate reverse cholesterol transport (RCT) in hamster, animal model expressing CETP under a high cholesterol diet (HF) supplemented with Ezetimibe using primary labelled macrophages. We studied three groups of hamsters (n=8/group) for 4 weeks: 1) chow diet group: Chow, 2) High cholesterol diet group: HF and 3) HF group supplemented with 0.01% of ezetimibe: HF+0.01%Ezet. Following intraperitoneal injection of 3H-cholesterol-labelled hamster primary macrophages, we measured the in vivo macrophage-to-feces RCT. .HF group exhibited an increase of triglycerides (TG), cholesterol, glucose in plasma and higher TG and cholesterol content in liver (p<0.01) compared to Chow group. Ezetimibe induced a significant decrease in plasma cholesterol with a lower LDL and VLDL cholesterol (p<0.001) and in liver cholesterol (p<0.001) and TG (p<0.01) content compared to HF. In vivo RCT essay showed an increase of tracer level in plasma and liver (p<0.05) but not in feces in HF compared to Chow group. The amount of labelled total sterol and cholesterol in liver and feces was significantly reduced (p<0.05) and increased (p=0.05) respectively with Ezetimibe treatment. No significant increase was obtained for labelled feces bile acids in HF+0.01%Ezet compared to HF. Ezetimibe decreased SCD1 gene expression and increased SR-B1 (p<0.05) in liver but did not affect NPC1L1 nor ABCG5 and ABCG8 expression in jejunum. In conclusion, ezetimibe exhibited an atheroprotective effect by enhancing RCT in hamster and decreasing LDL cholesterol. Ours findings showed also a hepatoprotective effect of ezetimibe by decreasing hepatic fat content. Significance Statement This work was assessed to determine the effect of ezetimibe treatment on high cholesterol diet induced disturbances and especially the effect on reverse cholesterol transport in animal model with CETP activity and using labelled primary hamster macrophages. We were able to demonstrate that ezetimibe exhibited an atheroprotective effect by enhancing RCT and by decreasing LDL cholesterol in hamster. We showed also a hepatoprotective effect of ezetimibe by decreasing hepatic fat content.


Assuntos
Absorção Fisiológica , Anticolesterolemiantes/farmacologia , Colesterol/metabolismo , Ezetimiba/farmacologia , Fezes/química , Macrófagos/metabolismo , Animais , Transporte Biológico , Colesterol/administração & dosagem , Colesterol/sangue , Cricetinae , Dieta Hiperlipídica , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Mesocricetus
3.
Am J Physiol Gastrointest Liver Physiol ; 317(4): G508-G517, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31460789

RESUMO

Nonalcoholic steatohepatitis (NASH) is an emerging health problem worldwide. However, efficacious pharmacological treatment for NASH is lacking. A major issue for preclinical evaluation of potential therapeutics for NASH is the limited number of appropriate animal models, i.e., models that do not require long-term dietary intervention and adequately mimic disease progression in humans. The present study aimed to evaluate a 3-wk dietary mouse model of NASH and validate it by studying the effects of liraglutide, a compound in advanced clinical development for NASH. C57BL6/J mice were fed a diet high in fat (60%), cholesterol (1.25%), and cholic acid (0.5%), along with 2% hydroxypropyl-ß-cyclodextrin in drinking water (HFCC-CDX diet). Histological and biological parameters were measured at 1 and 3 wk. After 1-wk diet induction, liraglutide was administrated daily for 2 wk and then NASH-associated phenotypic aspects were evaluated in comparison with control mice. Prior to treatment with liraglutide, mice fed the HFCC-CDX diet for 1 wk developed liver steatosis and had increased levels of oxidative-stress markers and hepatic and systemic inflammation. For mice not treated with liraglutide, these aspects were even more pronounced after 3 wk of the dietary period, with additional liver insulin resistance and fibrosis. Liraglutide treatment corrected the diet-induced alterations in glucose metabolism and significantly reduced hepatic steatosis and inflammation. This study provides a novel 3-wk dietary model of mice that rapidly develop NASH features, and this model will be suitable for evaluating the therapeutic efficacy of compounds in preclinical drug development for NASH.NEW & NOTEWORTHY We propose a diet high in fat (60%), cholesterol (1.25%), and cholic acid (0.5%) along with 2% hydroxypropyl-ß-cyclodextrin in drinking water (HFCC-CDX diet) as a new dietary model of nonalcoholic steatohepatitis. We used the HFCC-CDX model to reproduce the main features of disease development in humans for the purpose of facilitating the rapid screening of drug candidates and prioritizing the more promising candidates for advanced preclinical assessment and subsequent clinical trials.


Assuntos
Hipoglicemiantes/farmacologia , Liraglutida/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Colesterol na Dieta , Ácido Cólico/metabolismo , Dieta , Dieta Hiperlipídica , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/patologia , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia
4.
PLoS Biol ; 11(2): e1001485, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23431266

RESUMO

When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet-fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adolescente , Adulto , Idoso , Animais , Glucose , Humanos , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Pessoa de Meia-Idade , Niacina/farmacologia , Esterol Esterase/metabolismo , Adulto Jovem
5.
Diabetologia ; 57(8): 1674-83, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24891017

RESUMO

AIMS/HYPOTHESIS: Cathepsin S (CatS) belongs to a family of proteases that have been implicated in several disease processes. We previously identified CatS as a protein that is markedly overexpressed in adipose tissue of obese individuals and downregulated after weight loss and amelioration of glycaemic status induced by gastric bypass surgery. This prompted us to test whether the protease contributes to the pathogenesis of type 2 diabetes using mouse models with CatS inactivation. METHODS: CatS knockout mice and wild-type mice treated with orally active small-molecule CatS inhibitors were fed chow or high-fat diets and explored for change in glycaemic status. RESULTS: CatS deletion induced a robust reduction in blood glucose, which was preserved in diet-induced obesity and with ageing and was recapitulated with CatS inhibition in obese mice. In vivo testing of glucose tolerance, insulin sensitivity and glycaemic response to gluconeogenic substrates revealed that CatS suppression reduced hepatic glucose production despite there being no improvement in insulin sensitivity. This phenotype relied on downregulation of gluconeogenic gene expression in liver and a lower rate of hepatocellular respiration. Mechanistically, we found that the protein 'regulated in development and DNA damage response 1' (REDD1), a factor potentially implicated in reduction of respiratory chain activity, was overexpressed in the liver of mice with CatS deficiency. CONCLUSIONS/INTERPRETATION: Our results revealed an unexpected metabolic effect of CatS in promoting pro-diabetic alterations in the liver. CatS inhibitors currently proposed for treatment of autoimmune diseases could help to lower hepatic glucose output in obese individuals at risk for type 2 diabetes.


Assuntos
Glicemia/metabolismo , Catepsinas/antagonistas & inibidores , Catepsinas/genética , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Animais , Catepsinas/metabolismo , Dieta Hiperlipídica , Insulina/metabolismo , Camundongos , Camundongos Knockout , Consumo de Oxigênio/fisiologia
6.
Arterioscler Thromb Vasc Biol ; 33(1): 13-23, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23139291

RESUMO

OBJECTIVE: This study aimed to investigate whether cholesteryl ester transfer protein inhibition promotes in vivo reverse cholesterol transport in dyslipidemic hamsters. METHODS AND RESULTS: In vivo reverse cholesterol transport was measured after an intravenous injection of (3)H-cholesteryl-oleate-labeled/oxidized low density lipoprotein particles ((3)H-oxLDL), which are rapidly cleared from plasma by liver-resident macrophages for further (3)H-tracer egress in plasma, high density lipoprotein (HDL), liver, and feces. A first set of hamsters made dyslipidemic with a high-fat and high-fructose diet was treated with vehicle or torcetrapib 30 mg/kg (TOR) over 2 weeks. Compared with vehicle, TOR increased apolipoprotein E-rich HDL levels and significantly increased (3)H-tracer appearance in HDL by 30% over 72 hours after (3)H-oxLDL injection. However, TOR did not change (3)H-tracer recovery in liver and feces, suggesting that uptake and excretion of cholesterol deriving from apolipoprotein E-rich HDL is not stimulated. As apoE is a potent ligand for the LDL receptor, we next evaluated the effects of TOR in combination with the LDL-lowering drug berberine, which upregulates LDL receptor expression in dyslipidemic hamsters. Compared with TOR alone, treatment with TOR+berberine 150 mg/kg resulted in lower apolipoprotein E-rich HDL levels. After (3)H-oxLDL injection, TOR+berberine significantly increased (3)H-tracer appearance in fecal cholesterol by 109%. CONCLUSIONS: Our data suggest that cholesteryl ester transfer protein inhibition alone does not stimulate reverse cholesterol transport in dyslipidemic hamsters and that additional effects mediated by the LDL-lowering drug berberine are required to upregulate this process.


Assuntos
Berberina/farmacologia , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , LDL-Colesterol/sangue , Colesterol/sangue , Dislipidemias/tratamento farmacológico , Hipolipemiantes/farmacologia , Quinolinas/farmacologia , Animais , Transporte Biológico , Proteínas de Transferência de Ésteres de Colesterol/sangue , Ésteres do Colesterol/sangue , HDL-Colesterol/sangue , Cricetinae , Modelos Animais de Doenças , Regulação para Baixo , Quimioterapia Combinada , Dislipidemias/sangue , Fezes/química , Cinética , Lipoproteínas LDL/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptores X do Fígado , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Mesocricetus , Receptores Nucleares Órfãos/metabolismo , Regulação para Cima
7.
Nat Commun ; 14(1): 1062, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828835

RESUMO

To date, a biopsy is mandatory to evaluate parenchymal inflammation in the liver. Here, we evaluated whether molecular imaging of vascular cell adhesion molecule-1 (VCAM-1) could be used as an alternative non-invasive tool to detect liver inflammation in the setting of chronic liver disease. To do so, we radiolabeled anti-VCAM-1 nanobody (99mTc-cAbVCAM1-5) and used single-photon emission computed tomography (SPECT) to quantify liver uptake in preclinical models of non-alcoholic fatty liver disease (NAFLD) with various degree of liver inflammation: wild-type mice fed a normal or high-fat diet (HFD), FOZ fed a HFD and C57BL6/J fed a choline-deficient or -supplemented HFD. 99mTc-cAbVCAM1-5 uptake strongly correlates with liver histological inflammatory score and with molecular inflammatory markers. The diagnostic power to detect any degree of liver inflammation is excellent (AUROC 0.85-0.99). These data build the rationale to investigate 99mTc-cAbVCAM1-5 imaging to detect liver inflammation in patients with NAFLD, a largely unmet medical need.


Assuntos
Hepatite , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Fígado/metabolismo , Hepatite/patologia , Inflamação/patologia , Imagem Molecular/métodos , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
8.
Elife ; 122023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36649053

RESUMO

The rod-shaped adult cardiomyocyte (CM) harbors a unique architecture of its lateral surface with periodic crests, relying on the presence of subsarcolemmal mitochondria (SSM) with unknown role. Here, we investigated the development and functional role of CM crests during the postnatal period. We found in rodents that CM crest maturation occurs late between postnatal day 20 (P20) and P60 through both SSM biogenesis, swelling and crest-crest lateral interactions between adjacent CM, promoting tissue compaction. At the functional level, we showed that the P20-P60 period is dedicated to the improvement of relaxation. Interestingly, crest maturation specifically contributes to an atypical CM hypertrophy of its short axis, without myofibril addition, but relying on CM lateral stretching. Mechanistically, using constitutive and conditional CM-specific knock-out mice, we identified ephrin-B1, a lateral membrane stabilizer, as a molecular determinant of P20-P60 crest maturation, governing both the CM lateral stretch and the diastolic function, thus highly suggesting a link between crest maturity and diastole. Remarkably, while young adult CM-specific Efnb1 KO mice essentially exhibit an impairment of the ventricular diastole with preserved ejection fraction and exercise intolerance, they progressively switch toward systolic heart failure with 100% KO mice dying after 13 months, indicative of a critical role of CM-ephrin-B1 in the adult heart function. This study highlights the molecular determinants and the biological implication of a new late P20-P60 postnatal developmental stage of the heart in rodents during which, in part, ephrin-B1 specifically regulates the maturation of the CM surface crests and of the diastolic function.


Assuntos
Efrina-B1 , Miócitos Cardíacos , Animais , Camundongos , Diástole , Miofibrilas
9.
J Nutr ; 142(4): 704-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22357742

RESUMO

Reverse cholesterol transport (RCT) promotes the egress of cholesterol from peripheral tissues to the liver for biliary and fecal excretion. Although not demonstrated in vivo, RCT is thought to be impaired in patients with metabolic syndrome, in which liver steatosis prevalence is relatively high. Golden Syrian hamsters were fed a nonpurified (CON) diet and normal drinking water or a high-fat (HF) diet containing 27% fat, 0.5% cholesterol, and 0.25% deoxycholate as well as 10% fructose in drinking water for 4 wk. Compared to CON, the HF diet induced insulin resistance and dyslipidemia, with significantly higher plasma non-HDL-cholesterol concentrations and cholesteryl ester transfer protein activity. The HF diet induced severe liver steatosis, with significantly higher cholesterol and TG levels compared to CON. In vivo RCT was assessed by i.p. injecting ³H-cholesterol labeled macrophages. Compared to CON, HF hamsters had significantly greater ³H-tracer recoveries in plasma, but not HDL. After 72 h, ³H-tracer recovery in HF hamsters was 318% higher in liver and 75% lower in bile (P < 0.01), indicating that the HF diet impaired hepatic cholesterol fluxes. However, macrophage-derived cholesterol fecal excretion was 45% higher in HF hamsters than in CON hamsters. This effect was not related to intestinal cholesterol absorption, which was 89% higher in HF hamsters (P < 0.05), suggesting a possible upregulation of transintestinal cholesterol excretion. Our data indicate a significant increase in macrophage-derived cholesterol fecal excretion in a hamster model of metabolic syndrome, which may not compensate for the diet-induced dyslipidemia and liver steatosis.


Assuntos
Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Frutose/efeitos adversos , Resistência à Insulina , Macrófagos/metabolismo , Síndrome Metabólica/metabolismo , Animais , Transporte Biológico , Colesterol/análise , Colesterol/sangue , Proteínas de Transferência de Ésteres de Colesterol/sangue , Cricetinae , Dislipidemias/etiologia , Fígado Gorduroso/etiologia , Fezes/química , Cinética , Fígado/metabolismo , Masculino , Mesocricetus , Síndrome Metabólica/sangue , Síndrome Metabólica/etiologia , Síndrome Metabólica/fisiopatologia , Triglicerídeos/metabolismo , Regulação para Cima
10.
Dose Response ; 20(2): 15593258221099281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602582

RESUMO

Background: Nitric oxide (NO) as a vaso- and cardio-protective agent could reduce vasomotor dysfunction in different cardiovascular diseases. One of the current therapeutics targeted at NO availability in the vascular wall are highly diluted antibodies to endothelial NO-synthase (eNOS). This drug has previously shown its endothelium-protective effect and effectiveness in reducing hypertension. Current study was dedicated to evaluate the direct impact of highly diluted antibodies to eNOS on the vessel constriction and dilation ex vivo. Methods: For that purpose, we used thoracic aortas dissected from spontaneously hypertensive (SHR) rats. Endothelium-dependent relaxation in the presence of highly diluted antibodies to eNOS (1 mL) was examined after phenylephrine-induced pre-constriction of the aorta rings in response to gradually increased acetylcholine concentration (1 nM to 10 µM). Results: Highly diluted antibodies to eNOS enhanced acetylcholine-induced relaxation in a statistically significant manner. Moreover, it was demonstrated that observed effect was similar to perindopril, a well-known angiotensin-converting-enzyme inhibitor, which works through relaxing and widening blood vessels. Conclusions: Our findings indicate that highly diluted antibodies to eNOS restored impaired endothelium function, as demonstrated by increased relaxation of SHR rats aorta rings. The revealed results suggest beneficial effect of highly diluted antibodies to eNOS to ameliorate hypertension and related diseases.

11.
Gut Microbes ; 14(1): 2100200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35830432

RESUMO

Obese patientss with nonalcoholic steatohepatitis (NASH) are particularly prone to developing severe forms of coronavirus disease 19 (COVID-19). The gut-to-lung axis is critical during viral infections of the respiratory tract, and a change in the gut microbiota's composition might have a critical role in disease severity. Here, we investigated the consequences of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the gut microbiota in the context of obesity and NASH. To this end, we set up a nutritional model of obesity with dyslipidemia and NASH in the golden hamster, a relevant preclinical model of COVID-19. Relative to lean non-NASH controls, obese NASH hamsters develop severe inflammation of the lungs and liver. 16S rRNA gene profiling showed that depending on the diet, SARS-CoV-2 infection induced various changes in the gut microbiota's composition. Changes were more prominent and transient at day 4 post-infection in lean animals, alterations still persisted at day 10 in obese NASH animals. A targeted, quantitative metabolomic analysis revealed changes in the gut microbiota's metabolic output, some of which were diet-specific and regulated over time. Our results showed that specifically diet-associated taxa are correlated with disease parameters. Correlations between infection variables and diet-associated taxa highlighted a number of potentially protective or harmful bacteria in SARS-CoV-2-infected hamsters. In particular, some taxa in obese NASH hamsters (e.g. Blautia and Peptococcus) were associated with pro-inflammatory parameters in both the lungs and the liver. These taxon profiles and their association with specific disease markers suggest that microbial patterns might influence COVID-19 outcomes.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Cricetinae , Hepatopatia Gordurosa não Alcoólica/microbiologia , Obesidade/complicações , Obesidade/microbiologia , RNA Ribossômico 16S/genética , SARS-CoV-2
12.
Viruses ; 14(9)2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36146875

RESUMO

Obese patients with non-alcoholic steatohepatitis (NASH) are prone to severe forms of COVID-19. There is an urgent need for new treatments that lower the severity of COVID-19 in this vulnerable population. To better replicate the human context, we set up a diet-induced model of obesity associated with dyslipidemia and NASH in the golden hamster (known to be a relevant preclinical model of COVID-19). A 20-week, free-choice diet induces obesity, dyslipidemia, and NASH (liver inflammation and fibrosis) in golden hamsters. Obese NASH hamsters have higher blood and pulmonary levels of inflammatory cytokines. In the early stages of a SARS-CoV-2 infection, the lung viral load and inflammation levels were similar in lean hamsters and obese NASH hamsters. However, obese NASH hamsters showed worse recovery (i.e., less resolution of lung inflammation 10 days post-infection (dpi) and lower body weight recovery on dpi 25). Obese NASH hamsters also exhibited higher levels of pulmonary fibrosis on dpi 25. Unlike lean animals, obese NASH hamsters infected with SARS-CoV-2 presented long-lasting dyslipidemia and systemic inflammation. Relative to lean controls, obese NASH hamsters had lower serum levels of angiotensin-converting enzyme 2 activity and higher serum levels of angiotensin II-a component known to favor inflammation and fibrosis. Even though the SARS-CoV-2 infection resulted in early weight loss and incomplete body weight recovery, obese NASH hamsters showed sustained liver steatosis, inflammation, hepatocyte ballooning, and marked liver fibrosis on dpi 25. We conclude that diet-induced obesity and NASH impair disease recovery in SARS-CoV-2-infected hamsters. This model might be of value for characterizing the pathophysiologic mechanisms of COVID-19 and evaluating the efficacy of treatments for the severe forms of COVID-19 observed in obese patients with NASH.


Assuntos
COVID-19 , Dislipidemias , Hepatopatia Gordurosa não Alcoólica , Angiotensina II , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19/complicações , Cricetinae , Citocinas , Dieta , Modelos Animais de Doenças , Humanos , Inflamação , Mesocricetus , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações , SARS-CoV-2
13.
Gut Microbes ; 14(1): 2018900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34965194

RESUMO

Mounting evidence suggests that the gut-to-lung axis is critical during respiratory viral infections. We herein hypothesized that disruption of gut homeostasis during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may associate with early disease outcomes. To address this question, we took advantage of the Syrian hamster model. Our data confirmed that this model recapitulates some hallmark features of the human disease in the lungs. We further showed that SARS-CoV-2 infection associated with mild intestinal inflammation, relative alteration in intestinal barrier property and liver inflammation and altered lipid metabolism. These changes occurred concomitantly with an alteration of the gut microbiota composition over the course of infection, notably characterized by a higher relative abundance of deleterious bacterial taxa such as Enterobacteriaceae and Desulfovibrionaceae. Conversely, several members of the Ruminococcaceae and Lachnospiraceae families, including bacteria known to produce the fermentative products short-chain fatty acids (SCFAs), had a reduced relative proportion compared to non-infected controls. Accordingly, infection led to a transient decrease in systemic SCFA amounts. SCFA supplementation during infection had no effect on clinical and inflammatory parameters. Lastly, a strong correlation between some gut microbiota taxa and clinical and inflammation indices of SARS-CoV-2 infection severity was evidenced. Collectively, alteration of the gut microbiota correlates with disease severity in hamsters making this experimental model valuable for the design of interventional, gut microbiota-targeted, approaches for the control of COVID-19.Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COVID-19, coronavirus disease 2019; SCFAs, short-chain fatty acids; dpi, day post-infection; RT-PCR, reverse transcription polymerase chain reaction; IL, interleukin. ACE2, angiotensin converting enzyme 2; TMPRSS2, transmembrane serine protease 2.


Assuntos
COVID-19/microbiologia , COVID-19/fisiopatologia , Modelos Animais de Doenças , Microbioma Gastrointestinal , Mesocricetus , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , COVID-19/patologia , Cricetinae , Ácidos Graxos Voláteis/administração & dosagem , Ácidos Graxos Voláteis/metabolismo , Humanos , Masculino , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Tratamento Farmacológico da COVID-19
14.
J Lipid Res ; 52(11): 1965-73, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21841206

RESUMO

Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester (CE) and triglyceride between HDL and apoB-containing lipoproteins. Anacetrapib (ANA), a reversible inhibitor of CETP, raises HDL cholesterol (HDL-C) and lowers LDL cholesterol in dyslipidemic patients; however, the effects of ANA on cholesterol/lipoprotein metabolism in a dyslipidemic hamster model have not been demonstrated. To test whether ANA (60 mg/kg/day, 2 weeks) promoted reverse cholesterol transport (RCT), ³H-cholesterol-loaded macrophages were injected and (3)H-tracer levels were measured in HDL, liver, and feces. Compared to controls, ANA inhibited CETP (94%) and increased HDL-C (47%). ³H-tracer in HDL increased by 69% in hamsters treated with ANA, suggesting increased cholesterol efflux from macrophages to HDL. ³H-tracer in fecal cholesterol and bile acids increased by 90% and 57%, respectively, indicating increased macrophage-to-feces RCT. Mass spectrometry analysis of HDL from ANA-treated hamsters revealed an increase in free unlabeled cholesterol and CE. Furthermore, bulk cholesterol and cholic acid were increased in feces from ANA-treated hamsters. Using two independent approaches to assess cholesterol metabolism, the current study demonstrates that CETP inhibition with ANA promotes macrophage-to-feces RCT and results in increased fecal cholesterol/bile acid excretion, further supporting its development as a novel lipid therapy for the treatment of dyslipidemia and atherosclerotic vascular disease.


Assuntos
Colesterol/metabolismo , Oxazolidinonas/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Colesterol/química , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Cricetinae , Dislipidemias/metabolismo , Fezes , Lipoproteínas HDL/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos
15.
Eur J Clin Invest ; 41(9): 921-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21299553

RESUMO

BACKGROUND: Reverse cholesterol transport (RCT) is an anti-atherogenic process by which cholesterol is effluxed from peripheral tissues by high-density lipoprotein (HDL) and returned to the liver for excretion into the bile and faeces. Dyslipidemia is thought to impair RCT through higher triglyceride-rich lipoprotein (TRL), low HDL-cholesterol and higher activity of cholesteryl ester transfer protein (CETP), which transfers cholesteryl esters from HDL to TRL for further hepatic uptake. As CETP pathway would represent a major route in human RCT, we therefore investigated whether diet-induced dyslipidemia impairs RCT in hamster, a CETP-expressing species. MATERIALS AND METHODS: Golden Syrian hamsters were fed a chow or chow+0·3% cholesterol diet over 4 weeks. Biochemical parameters and in vivo VLDL-triglycerides secretion (Triton WR-1339 injection) were then measured. In vitro macrophage cholesterol efflux was measured, and in vivo macrophage-to-faeces RCT was also assessed after an intraperitoneal injection of (3) H-cholesterol-labelled hamster primary macrophages. RESULTS: Cholesterol-enriched diet increased plasma total cholesterol (144%), triglycerides (101%), VLDL-triglycerides secretion (175%), CETP activity (44%) and reduced HDL-cholesterol/total cholesterol ratio by 20% (P < 0·01 vs. chow). Cholesterol-enriched diet significantly increased hepatic total cholesterol and triglycerides by 459 and 118% and increased aortic total cholesterol content by 304%. In vitro cholesterol efflux from macrophages to plasma was significantly reduced by 25% with plasma from cholesterol-fed hamsters. In vivo RCT experiments showed a significant 75% reduction of macrophage-derived cholesterol faecal excretion in cholesterol-fed hamsters. CONCLUSIONS: Overall, these data demonstrate that diet-induced dyslipidemia severely impairs in vivo RCT in hamsters.


Assuntos
Colesterol na Dieta/metabolismo , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Dislipidemias/metabolismo , Fígado/metabolismo , Macrófagos Peritoneais/metabolismo , Animais , Aorta/metabolismo , Transporte Biológico , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Cricetinae , Dieta , Modelos Animais de Doenças , Mesocricetus
16.
Metabolism ; 117: 154707, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33444606

RESUMO

BACKGROUND: Cardiovascular disease is the leading cause of deaths in nonalcoholic steatohepatitis (NASH) patients. Mouse models, while widely used for drug development, do not fully replicate human NASH nor integrate the associated cardiac dysfunction, i.e. heart failure with preserved ejection fraction (HFpEF). To overcome these limitations, we established a nutritional hamster model developing both NASH and HFpEF. We then evaluated the effects of the dual peroxisome proliferator activated receptor alpha/delta agonist elafibranor developed for the treatment of NASH patients. METHODS: Male Golden Syrian hamsters were fed for 10 to 20 weeks with a free choice diet, which presents hamsters with a choice between control chow diet with normal drinking water or a high fat/high cholesterol diet with 10% fructose enriched drinking water. Biochemistry, histology and echocardiography analysis were performed to characterize NASH and HFpEF. Once the model was validated, elafibranor was evaluated at 15 mg/kg/day orally QD for 5 weeks. RESULTS: Hamsters fed a free choice diet for up to 20 weeks developed NASH, including hepatocyte ballooning (as confirmed with cytokeratin-18 immunostaining), bridging fibrosis, and a severe diastolic dysfunction with restrictive profile, but preserved ejection fraction. Elafibranor resolved NASH, with significant reduction in ballooning and fibrosis scores, and improved diastolic dysfunction with significant reduction in E/A and E/E' ratios. CONCLUSION: Our data demonstrate that the free choice diet induced NASH hamster model replicates the human phenotype and will be useful for validating novel drug candidates for the treatment of NASH and associated HFpEF.


Assuntos
Chalconas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Insuficiência Cardíaca/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Propionatos/farmacologia , Animais , Colesterol/metabolismo , Modelos Animais de Doenças , Frutose/metabolismo , Insuficiência Cardíaca/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Masculino , Mesocricetus , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo , PPAR delta/metabolismo
17.
Acta Diabetol ; 58(8): 1035-1049, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33754166

RESUMO

OBJECTIVE: The intestinal microbiota to immune system crosstalk is a major regulator of metabolism and hence metabolic diseases. An impairment of the chemokine receptor CX3CR1, as a key regulator shaping intestinal microbiota under normal chow feeding, could be one of the early events of dysglycemia. METHODS: We studied the gut microbiota ecology by sequencing the gut and tissue microbiota. We studied its role in energy metabolism in CX3CR1-deficent and control mice using various bioassays notably the glycemic regulation during fasting and the respiratory quotient as two highly sensitive physiological features. We used antibiotics and prebiotics treatments, and germ free mouse colonization. RESULTS: We identify that CX3CR1 disruption impairs gut microbiota ecology and identified a specific signature associated to the genotype. The glycemic control during fasting and the respiratory quotient throughout the day are deeply impaired. A selected four-week prebiotic treatment modifies the dysbiotic microbiota and improves the fasting state glycemic control of the CX3CR1-deficent mice and following a glucose tolerance test. A 4 week antibiotic treatment also improves the glycemic control as well. Eventually, germ free mice colonized with the microbiota from CX3CR1-deficent mice developed glucose intolerance. CONCLUSIONS: CX3CR1 is a molecular mechanism in the control of the gut microbiota ecology ensuring the maintenance of a steady glycemia and energy metabolism. Its impairment could be an early mechanism leading to gut microbiota dysbiosis and the onset of metabolic disease.


Assuntos
Receptor 1 de Quimiocina CX3C/fisiologia , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal/fisiologia , Animais , Antibacterianos/administração & dosagem , Glicemia/fisiologia , Receptor 1 de Quimiocina CX3C/deficiência , Disbiose , Metabolismo Energético , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prebióticos/administração & dosagem , Fatores de Risco
18.
Acta Diabetol ; 58(7): 881-897, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33723651

RESUMO

AIMS: Liraglutide controls type 2 diabetes (T2D) and inflammation. Gut microbiota regulates the immune system and causes at least in part type 2 diabetes. We here evaluated whether liraglutide regulates T2D through both gut microbiota and immunity in dysmetabolic mice. METHODS: Diet-induced dysmetabolic mice were treated for 14 days with intraperitoneal injection of liraglutide (100 µg/kg) or with vehicle or Exendin 4 (10 µg/kg) as controls. Various metabolic parameters, the intestinal immune cells were characterized and the 16SrDNA gene sequenced from the gut. The causal role of gut microbiota was shown using large spectrum antibiotics and by colonization of germ-free mice with the gut microbiota from treated mice. RESULTS: Besides, the expected metabolic impacts liraglutide treatment induced a specific gut microbiota specific signature when compared to vehicle or Ex4-treated mice. However, liraglutide only increased glucose-induced insulin secretion, reduced the frequency of Th1 lymphocytes, and increased that of TReg in the intestine. These effects were abolished by a concomitant antibiotic treatment. Colonization of germ-free mice with gut microbiota from liraglutide-treated diabetic mice improved glucose-induced insulin secretion and regulated the intestinal immune system differently from what observed in germ-free mice colonized with microbiota from non-treated diabetic mice. CONCLUSIONS: Altogether, our result demonstrated first the influence of liraglutide on gut microbiota and the intestinal immune system which could at least in part control glucose-induced insulin secretion.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Secreção de Insulina/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Liraglutida/farmacologia , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/microbiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Cell Rep ; 37(6): 109958, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758301

RESUMO

Impaired hepatic glucose and lipid metabolism are hallmarks of type 2 diabetes. Increased sulfide production or sulfide donor compounds may beneficially regulate hepatic metabolism. Disposal of sulfide through the sulfide oxidation pathway (SOP) is critical for maintaining sulfide within a safe physiological range. We show that mice lacking the liver- enriched mitochondrial SOP enzyme thiosulfate sulfurtransferase (Tst-/- mice) exhibit high circulating sulfide, increased gluconeogenesis, hypertriglyceridemia, and fatty liver. Unexpectedly, hepatic sulfide levels are normal in Tst-/- mice because of exaggerated induction of sulfide disposal, with associated suppression of global protein persulfidation and nuclear respiratory factor 2 target protein levels. Hepatic proteomic and persulfidomic profiles converge on gluconeogenesis and lipid metabolism, revealing a selective deficit in medium-chain fatty acid oxidation in Tst-/- mice. We reveal a critical role of TST in hepatic metabolism that has implications for sulfide donor strategies in the context of metabolic disease.


Assuntos
Diabetes Mellitus/patologia , Dislipidemias/patologia , Gluconeogênese , Fígado/patologia , Sulfetos/metabolismo , Tiossulfato Sulfurtransferase/fisiologia , Animais , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Dislipidemias/etiologia , Dislipidemias/metabolismo , Glucose/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Proteoma/metabolismo
20.
J Lipid Res ; 51(4): 763-70, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19965597

RESUMO

Liver X receptor (LXR) activation promotes reverse cholesterol transport (RCT) in rodents but has major side effects (increased triglycerides and LDL-cholesterol levels) in species expressing cholesteryl ester transfer protein (CETP). In the face of dyslipidemia, it remains unclear whether LXR activation stimulates RCT in CETP species. We therefore used a hamster model made dyslipidemic with a 0.3% cholesterol diet and treated with vehicle or LXR agonist GW3965 (30 mg/kg bid) over 10 days. To investigate RCT, radiolabeled (3)H-cholesterol macrophages or (3)H-cholesteryl oleate-HDL were then injected to measure plasma and feces radioactivity over 72 or 48 h, respectively. The cholesterol-enriched diet increased VLDL-triglycerides and total cholesterol levels in all lipoprotein fractions and strongly increased liver lipids. Overall, GW3965 failed to improve both dyslipidemia and liver steatosis. However, after (3)H-cholesterol labeled macrophage injection, GW3965 treatment significantly increased the (3)H-tracer appearance by 30% in plasma over 72 h, while fecal (3)H-cholesterol excretion increased by 156% (P < 0.001). After (3)H-cholesteryl oleate-HDL injection, GW3965 increased HDL-derived cholesterol fecal excretion by 64% (P < 0.01 vs. vehicle), while plasma fractional catabolic rate remained unchanged. Despite no beneficial effect on dyslipidemia, LXR activation promotes macrophage-to-feces RCT in dyslipidemic hamsters. These results emphasize the use of species with a more human-like lipoprotein metabolism for drug profiling.


Assuntos
Benzoatos/farmacologia , Benzilaminas/farmacologia , Colesterol/metabolismo , Dislipidemias/metabolismo , Receptores Nucleares Órfãos/agonistas , Animais , Benzoatos/uso terapêutico , Benzilaminas/uso terapêutico , Ácidos e Sais Biliares/análise , Transporte Biológico/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Linhagem Celular , Colesterol/administração & dosagem , Colesterol/sangue , Cricetinae , Modelos Animais de Doenças , Dislipidemias/sangue , Dislipidemias/etiologia , Fígado Gorduroso/etiologia , Fezes/química , Regulação da Expressão Gênica/efeitos dos fármacos , Absorção Intestinal/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas/sangue , Lipoproteínas HDL/administração & dosagem , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptores X do Fígado , Macrófagos/metabolismo , Mesocricetus , Camundongos , RNA Mensageiro/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA