Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400580, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016162

RESUMO

In formulas employed for analysis of organic electronic devices, the relative dielectric constant value of the semiconductor organic films is often assumed rather than measured, even though it is a fundamental parameter for a correct interpretation. This is particularly true for ultrathin films made of discrete molecular layers. In this work, Spectroscopy Ellipsometry and Scanning Capacitance Microscopy were used to study thin films made of N,N'-bis(n-octyl)-x:y,dicyanoperylene-3,4:9,10-bis(dicarboximide). The relative dielectric constant presents a non-monotonic trend with thickness: it is equal to 2.1 for one molecular layer, saturating at 3.2 for increasing thickness. This maximum value, equivalent to the bulk one, occurs when the coverage is in between the third to the fourth layer. In this range, the growth switches from a Frank-Van der Merwe (2D growth) to a Volmer-Weber mode (3D growth); in addition, the molecular configuration assumes a bent/distorted geometry with respect to the initial edge-on one. These results establish a morphological dependence of the dielectric constant, especially in the vicinity of the substrate interface, that disappears at a certain distance from it.

2.
Langmuir ; 39(35): 12430-12451, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37608587

RESUMO

The physico-chemical properties of native oxide layers, spontaneously forming on crystalline Si wafers in air, can be strictly correlated to the dopant type and doping level. In particular, our investigations focused on oxide layers formed upon air exposure in a clean room after Si wafer production, with dopant concentration levels from ≈1013 to ≈1019 cm-3. In order to determine these correlations, we studied the surface, the oxide bulk, and its interface with Si. The surface was investigated using the contact angle, thermal desorption, and atomic force microscopy measurements which provided information on surface energy, cleanliness, and morphology, respectively. Thickness was measured with ellipsometry and chemical composition with X-ray photoemission spectroscopy. Electrostatic charges within the oxide layer and at the Si interface were studied with Kelvin probe microscopy. Some properties such as thickness, showed an abrupt change, while others, including silanol concentration and Si intermediate-oxidation states, presented maxima at a critical doping concentration of ≈2.1 × 1015 cm-3. Additionally, two electrostatic contributions were found to originate from silanols present on the surface and the net charge distributed within the oxide layer. Lastly, surface roughness was also found to depend upon dopant concentration, showing a minimum at the same critical dopant concentration. These findings were reproduced for oxide layers regrown in a clean room after chemical etching of the native ones.

3.
Nanomaterials (Basel) ; 13(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903750

RESUMO

In this work, we investigate a vertically illuminated near-infrared photodetector based on a graphene layer physically embedded between a crystalline and a hydrogenated silicon layer. Under near-infrared illumination, our devices show an unforeseen increase in the thermionic current. This effect has been ascribed to the lowering of the graphene/crystalline silicon Schottky barrier as the result of an upward shift in the graphene Fermi level induced by the charge carriers released from traps localized at the graphene/amorphous silicon interface under illumination. A complex model reproducing the experimental observations has been presented and discussed. Responsivity of our devices exhibits a maximum value of 27 mA/W at 1543 nm under an optical power of 8.7 µW, which could be further improved at lower optical power. Our findings offer new insights, highlighting at the same time a new detection mechanism which could be exploited for developing near-infrared silicon photodetectors suitable for power monitoring applications.

4.
Opt Express ; 19(4): 2941-51, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21369117

RESUMO

Hydrogenated amorphous silicon (a-Si:H) has been already considered for the objective of passive optical elements, like waveguides and ring resonators, within photonic integrated circuits at λ = 1.55 µm. However the study of its electro-optical properties is still at an early stage, therefore this semiconductor in practice is not considered for light modulation as yet. We demonstrated, for the first time, effective electro-optical modulation in a reverse biased a-Si:H p-i-n waveguiding structure. In particular, phase modulation was studied in a waveguide integrated Fabry-Perot resonator in which the V(π)⋅L(π) product was determined to be 63 V⋅cm. Characteristic switch-on and switch-off times of 14 ns were measured. The device employed a wider gap amorphous silicon carbide (a-SiC:H) film for the lower cladding layer instead of silicon oxide. In this way the highest temperature involved in the fabrication process was 170°C, which ensured the desired technological compatibility with CMOS processes.

5.
Nanomaterials (Basel) ; 11(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34685211

RESUMO

In this study, the structure and morphology, as well as time, ultraviolet radiation, and humidity stability of thin films based on newly developed 1D (PRSH)PbX3 (X = Br, I) pseudo-perovskite materials, containing 1D chains of face-sharing haloplumbate octahedra, are investigated. All films are strongly crystalline already at room temperature, and annealing does not promote further crystallization or film reorganization. The film microstructure is found to be strongly influenced by the anion type and, to a lesser extent, by the DMF/DMSO solvent volume ratio used during film deposition by spin-coating. Comparison of specular X-ray diffraction and complementary grazing incidence X-ray diffraction analysis indicates that the use of DMF/DMSO mixed solvents promotes the strengthening of a dominant 100 or 210 texturing, as compared the case of pure DMF, and that the haloplumbate chains always lie in a plane parallel to the substrate. Under specific DMF/DMSO solvent volume ratios, the prepared films are found to be highly stable in time (up to seven months under fluxing N2 and in the dark) and to highly moist conditions (up to 25 days at 78% relative humidity). Furthermore, for representative (PRSH)PbX3 films, resistance against ultraviolet exposure (λ = 380 nm) is investigated, showing complete stability after irradiation for up to 15 h at a power density of 600 mW/cm2. These results make such thin films interesting for highly stable perovskite-based (opto)electronic devices.

6.
Opt Express ; 18(8): 8087-93, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20588653

RESUMO

Detection of glucose in water solution for several different concentrations has been performed with the purpose to determine the sensitivity of Near Infrared Bloch Surface Waves (lambda = 1.55microm) upon refractive index variations of the outer medium. TE-polarized electromagnetic surface waves are excited by a prism on a silicon nitride multilayer, according to the Kretschmann configuration. The real-time reflectance changes induced by discrete variations in glucose concentration has been revealed and analyzed. Without using any particular averaging strategy during the measurements, we pushed the device detection limit down to a glucose concentration of 2.5mg/dL, corresponding to a minimum detectable refractive index variation of the water solution as low as 3.8.10(-6).


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Glucose/análise , Radiação , Propriedades de Superfície
7.
Opt Express ; 16(10): 7540-50, 2008 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-18545459

RESUMO

Electro optical absorption in hydrogenated amorphous silicon (proportional-Si:H)--morphous silicon carbonitride (proportional-SiCxNy) multilayers have been studied in two different planar multistacks waveguides. The waveguides were realized by plasma enhanced chemical vapour deposition (PECVD), a technology compatible with the standard microelectronic processes. Light absorption is induced at lambda = 1.55 microm through the application of an electric field which induces free carrier accumulation across the multiple insulator/semiconductor device structure. The experimental performances have been compared to those obtained through calculations using combined two-dimensional (2-D) optical and electrical simulations.

8.
Nanoscale ; 9(21): 7169-7178, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28513716

RESUMO

Efforts to realize thin-film solar cells on unconventional substrates face several obstacles in achieving good energy-conversion efficiency and integrating light-management into the solar cell design. In this report a technique to circumvent these obstacles is presented: transferability and an efficient light-harvesting scheme are combined for thin-film silicon solar cells by the incorporation of a NaCl layer. Amorphous silicon solar cells in p-i-n configuration are fabricated on reusable glass substrates coated with an interlayer of NaCl. Subsequently, the solar cells are detached from the substrate by dissolution of the sacrificial NaCl layer in water and then transferred onto a plastic sheet, with a resultant post-transfer efficiency of 9%. The light-trapping effect of the surface nanotextures originating from the NaCl layer on the overlying solar cell is studied theoretically and experimentally. The enhanced light absorption in the solar cells on NaCl-coated substrates leads to significant improvement in the photocurrent and energy-conversion efficiency in solar cells with both 350 and 100 nm thick absorber layers, compared to flat-substrate solar cells. Efficient transferable thin-film solar cells hold a vast potential for widespread deployment of off-grid photovoltaics and cost reduction.

9.
Nanoscale ; 8(23): 12035-46, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27244247

RESUMO

A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering. The n-i-p amorphous silicon thin-film solar cells grown on such a back-reflector show enhanced light absorption resulting in improved external quantum efficiency. The benefit of the light trapping in those solar cells is evidenced by the gains in short-circuit current density and efficiency up to 15.6% and 19.3% respectively, compared to the reference flat solar cells. This improvement in the current generation in the solar cells grown on the flat-topped (buried pyramid) back-reflector is observed even when the irradiation takes place at large oblique angles of incidence. Finite-difference-time-domain simulation results of optical absorption and ideal short-circuit current density values agree well with the experimental findings. The proposed approach uses a low cost and simple fabrication technique and allows effective light manipulation by utilizing the optical properties of micro-scale structures and nanoscale constituent particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA