Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Langmuir ; 40(1): 704-713, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38109847

RESUMO

Recently, laser-induced graphene (LIG), which has been successfully applied in CDI technology (directly without a complex preparation process), has gained considerable attention. However, the raw LIG electrode with a limited number of active sites exhibits low adsorption efficiency. Therefore, the search for a suitable and effective method to modify LIG to improve its electroadsorption performance is significant. Herein, a very simple titration hydrolysis method is adopted to modify LIG, resulting in a layer of hydrated titanium oxide (HTO) being synthesized on the surface of LIG. The LIG/HTO composites possess a good adsorption property since covering the surface of LIG with a layer of HTO can greatly improve the adsorption capacity of LIG. Moreover, with the addition of HTO, not only the proton transfer ability of LIG has been enhanced but also considerable specific capacitance has been enlarged. As a result, LIG/HTO composite as CDI electrode displays a maximum theoretical adsorption capacity of 1780.89 mg/g at 1.2 V, and the capacitance of LIG/HTO composite material is 4.74 times higher than LIG. During the electroadsorption process, Ti4+ is reduced to Ti3+ under external voltage, and O2- is produced through oxidation. Meanwhile, part of the U (VI) is hydrolyzed into UO3·2H2O under the action of -OH, and some combine with O2- to produce UO4·4H2O.

2.
J Am Chem Soc ; 143(23): 8631-8638, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34077205

RESUMO

Plasmonic dimers not only provide a unique platform for studying fundamental plasmonic behavior and effects but also are functional materials for numerous applications. The efficient creation of well-defined dimers with flexible control of structure parameters and thus tunable optical property is the prerequisite for fully exploiting the potential of this nanostructure. Herein, based on a polymer-assisted self-assembly approach in conjugation with molecular cage chemistry, a strategy was demonstrated for constructing cage-bridged plasmonic dimers with controlled sizes, compositions, shape, symmetry, and interparticle gap separation in a modular and high-yield manner. With a high degree of freedom and controllability, this strategy allows facilely accessing various symmetrical/asymmetrical dimers with sub-5 nm gap distance and tailored optical properties. Importantly, as the linkage of the two constituent elements, the molecular cages embedded in the junction endow the assembled dimers with the ability to precisely and reversibly host rich guest molecules in hotspot regions, offering great potential for creating various plasmon-mediated applications.

3.
Small ; 17(47): e2104385, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34643335

RESUMO

Multicompartment assemblies attract much attention for their wide applications. However, the fabrication of multicompartment assemblies usually requires elaborately designed building blocks and careful controlling. The emergence of droplet networks has provided a facile way to construct multiple droplet architectures, which can further be converted to multicompartment assemblies. Herein, the bind motif-free building blocks are presented, which consist of the hydrophobic Tf2 N- -based ionic liquid (IL) dissolving LiTf2 N salt, that can conjugate via arrested coalescence in confined-space templates to form IL droplet networks. Subsequent ultraviolent polymerization generates robust free-standing multicompartment assemblies. The conjugation of building blocks relies not on the peripheral bind motif but on the interfacial instability-induced arrested coalescence, avoiding tedious surface modification and assembly process. By tuning structures of templates and building blocks, multicompartment assemblies with 0D, 1D, 2D, and 3D structures are prepared in a facile and high-throughput way. Importantly, the bottom-up construction enables modular control over the compositions and spatial positions of individual building blocks. Combining with the excellent solvency of ILs, this system can serve as a general platform towards versatile multicompartment architectures. As demonstrations, by tailoring the chambers the multicompartment assemblies can spatiotemporally sense and report the chemical cues and perform various modes of motion.


Assuntos
Líquidos Iônicos , Interações Hidrofóbicas e Hidrofílicas
4.
Food Chem X ; 21: 101122, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261844

RESUMO

Protein-polysaccharide composite is of great significance for the development of soluble protein recovery process. This study investigated the effects of cavitation jet (CJ) pretreatment at different time (0, 60, 120, 180, 240, 300 s) intervals on the recovery of soy whey protein (SWP) from soy whey wastewater using chitosan (CH). In addition, the structure and properties of the SWP/CH complexes were examined. The results showed that the recovery yield of SWP reached 84.44 % when the CJ pretreatment time was 180 s, and the EAI and ESI values of the SWP/CH complex increased from 32.39 m2/g and 21 min to 48.47 m2/g and 32 min, respectively. In the CJ pretreatment process, SWP promotes the recombination with chitosan through electrostatic interaction and hydrogen bond, while hydrophobic interaction is also involved. This study has guiding significance for CJ technology in the recovery and utilization of protein in industrial wastewater.

5.
Int J Biol Macromol ; 256(Pt 1): 128381, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000596

RESUMO

The interactions between carboxymethyl cellulose sodium and proteins can regulate the interfacial and rheological properties of HIPEs, which plays a leading role in the stabilities of HIPEs. This article prepared various ratios of soluble soy protein isolate/carboxymethyl cellulose sodium (SPI/CMC) complexes in different proportions and examined the impact of various ratios of complexes on the structure and interface properties of complexes systems. Additionally, it explored the co-emulsification mechanism of HIPEs using SPI and CMC. At appropriate ratios of SPI/CMC, SPI and CMC mainly combine through non covalent binding and form complexes with smaller particle sizes and stronger electrostatic repulsion. The interfacial properties indicated that adding appropriate CMC increased the pliability and reduced the interfacial tension, while also enhancing the wettability of SPI/CMC complexes. At the ratio of 2:1, the SPI/CMC complexes-stabilized HIPPEs exhibited smaller oil droplets size, tighter droplet packing, and thicker interfacial film through the bridging of droplets and the generation of stronger gel-like network structures to prevent the coalescence/flocculation of droplets. These results suggested that the appropriate ratios of SPI/CMC can improve the physical stability of HIPEs by changing the structure and interface characteristics of the SPI/CMC complexes. This work provided theoretical support for stable HIPEs formed with protein-polysaccharide complexes.


Assuntos
Carboximetilcelulose Sódica , Proteínas de Soja , Proteínas de Soja/química , Emulsões/química , Molhabilidade , Tamanho da Partícula , Sódio
6.
Adv Colloid Interface Sci ; 326: 103124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461766

RESUMO

Nanomedicine has a profound impact on various research domains including drug delivery, diagnostics, theranostics, and regenerative medicine. Nevertheless, the clinical translation of nanomedicines for solid cancer remains limited due to the abundant physiological and pathological barriers in tumor that hinder the intratumoral penetration and distribution of these nanomedicines. In this article, we review the dynamic remodeling of tumor extracellular matrix during the tumor progression, discuss the impact of biophysical obstacles within tumors on the penetration and distribution of nanomedicines within the solid tumor and collect innovative approaches to surmount these obstacles for improving the penetration and accumulation of nanomedicines in tumor. Furthermore, we dissect the challenges and opportunities of the respective approaches, and propose potential avenues for future investigations. The purpose of this review is to provide a perspective guideline on how to effectively enhance the penetration of nanomedicines within tumors using promising methods.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Sistemas de Liberação de Medicamentos , Matriz Extracelular/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
7.
Ultrason Sonochem ; 104: 106843, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38471387

RESUMO

The primary significance of this work is that the commercial yeast proteins particles were successfully used to characterize the high internal phase Pickering emulsions (HIPPEs). The different sonication time (0,3,7,11,15 min) was used to modulate the structure and interface characteristics of yeast proteins (YPs) that as Pickering particles. Immediately afterward, the influence of YPs particles prepared at different sonication time on the rheological behavior and coalescence mechanism of HIPPEs was investigated. The results indicate that the YPs sonicated for 7 min exhibited a more relaxed molecular structures and conformation, the smallest particle size, the highest H0 and optimal amphiphilicity (the three-phase contact (θ) was 88.91°). The transition from extended to compact conformations of YPs occurred when the sonication time exceeded 7 min, resulting in an augmentation of size of YPs particles, a reduction in surface hydrophobicity (H0), and an elevation in hydrophilicity. The HIPPEs stabilized by YPs particles sonicated for 7 min exhibited the highest adsorption interface protein percentage and a more homogeneous three-dimensional (3D) protein network, resulting in the smallest droplet size and the highest storage (G'). The HIPPEs sample that stabilized by YPs particles sonicated for 15 min showed the lowest adsorption protein percentage. This caused a reduction in the thickness of its interface protein layer and an enlargement in the droplet diameter (D [3,2]). It was prone to droplet coalescence according to the equation used to evaluate the coalescence probability of droplets (Eq (2)). And the non-adsorbed YPs particles form larger aggregation structures in the continuous phase and act as "structural agents" in 3D protein network. Therefore, mechanistically, the interface protein layer formed by YPs particles sonicated 7 min contributed more to HIPPEs stability. Whereas the "structural agents" contributed more to HIPPEs stability when the sonication time exceeded 7 min. The present results shed important new light on the application of commercial YPs in the functional food fields, acting as an available and effective alternative protein.


Assuntos
Proteínas Fúngicas , Sonicação , Emulsões/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula
8.
Food Chem X ; 21: 101066, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38268843

RESUMO

At present, there have been many research articles reporting that plant-based protein Pickering particles from different sources are used to stabilize Pickering emulsions, but the reports of corresponding review articles are still far from sufficient. This study focuses on the research hotspots and related progress on plant-based protein Pickering particles in the past five years. First, the article describes the mechanism by which Pickering emulsions are stabilized by different types of plant-based protein Pickering particles. Then, the extraction, preparation, and modification methods of various plant-based protein Pickering particles are highlighted to provide a reference for the development of greener and more efficient plant-based protein Pickering particles. The article also introduces some of the most promising applications of Pickering emulsions stabilized by plant-based protein Pickering particles in the food field. Finally, the paper also discusses the potential applications and challenges of plant-based protein Pickering particles in the food industry.

9.
J Hazard Mater ; 477: 135286, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39047573

RESUMO

The simultaneous removal of heavy metal complexes (HMCs) and heavy metal ions presents a significant challenge in treating wastewater. To address this, we propose a Calcite/Peroxymonosulfate (Calcite/PMS) system aimed at simultaneously decomplexing Cu-EDTA and removing Cu ions. Calcite/PMS system could achieve 99.5 % Cu-EDTA decomplexation and 61.9 % Cu ions removal within 60 min under initial conditions of Cu-EDTA (10 mg/L), Calcite (3 g/L), and PMS (2 mM). Singlet oxygen (1O2) emerged as the predominant reactive species responsible for Cu-EDTA decomplexation, which selectively targeted the N-C bonds in the Cu-EDTA structure to produce intermediates with lower biotoxicity than EDTA. Interestingly, solid phase Cu(III) (≡Cu(III)) promoted the generation of superoxide radicals (O2•-) with a contribution of up to 72.8 %. Subsequently, nascent ≡Cu(III) and O2•- accelerated the degradation of intermediates. Besides, coexisting organic substances inhibited Cu-EDTA decomplexation, whereas inorganic ions had a weak impact. After five cycles of use, the Calcite/PMS system retained 99.3 % efficiency in decomplexing Cu-EDTA. This investigation provides valuable insights into using calcite to remove HMCs and enhances our comprehension of the decomplexation intermediates accelerating HMCs degradation.

10.
Food Chem ; 451: 139415, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670020

RESUMO

The interaction mechanism between soybean protein isolate (SPI) and furan flavor compounds with different structures is studied using spectroscopy, molecular docking, and MD simulation methods. The order of binding ability between SPI and furan flavor compounds is 2-acetylfuran>furfural>5-methylfurfural. The structural differences (position and quantity of methyl groups) of three furan flavor compounds are key factors leading to the different adsorption abilities of SPI for furan flavor compounds. The findings from spectroscopy analyses suggest that the interaction between SPI and furan flavor compounds involves both static and dynamic quenching mechanisms, with static quenching being the main factor. Molecular docking and MD simulations reveal the atomic-level mechanisms underlying the stable binding for SPI and furan flavor compounds at spatiotemporal multiscale. This study provides a theoretical framework for the production and adjustment of meat essence formula in the production of soybean protein-based meat products.


Assuntos
Aromatizantes , Furanos , Simulação de Acoplamento Molecular , Proteínas de Soja , Proteínas de Soja/química , Adsorção , Furanos/química , Aromatizantes/química , Glycine max/química , Produtos da Carne/análise , Simulação de Dinâmica Molecular
11.
Biosens Bioelectron ; 251: 116126, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367565

RESUMO

Electromagnetic metamaterials feature the capability of squeezing photons into hotspot regions of high intensity near-field enhancement for strong light-matter interaction, underpinning the next generation of emerging biosensors. However, randomly dispersed biomolecules around the hotspots lead to weak interactions. Here, we demonstrate an all-silicon dielectric terahertz metamaterial sensor design capable of passively trapping biomoleculars into the resonant cavities confined with powerful electric field. Specifically, multiple controllable high-quality factor resonances driven by bound states in the continuum (BIC) are realized by employing longitudinal symmetry breaking. The dielectric metamaterial sensor with nearly 15.2 experimental figure-of-merit enabling qualitative and quantitative identification of different amino acids by delivering biomolecules to the hotspots for strong light-matter interactions. It is envisioned that the presented strategy will enlighten high-performance meta-sensors design from microwaves to visible frequencies, and serve as a potential platform for microfluidic sensing, biomolecular capture, and sorting devices.


Assuntos
Técnicas Biossensoriais , Aminoácidos , Movimento Celular , Eletricidade , Microfluídica
12.
Food Chem X ; 22: 101363, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681229

RESUMO

In this study, ω-3 medium- and long-chain triacylglycerols (MLCTs) microcapsules with excellent performance were obtained using soy protein as the wall component to address the oxidation-related problems of MLCTs. Additionally, the effect of soy, whey, or pea proteins on microcapsules in terms of the changes in their structure and physicochemical properties was investigated. The results showed that the small particle size, low PDI (polydispersity index) and zeta potential, fast adsorption rate, and low interfacial tension of these protein-based samples fabricated through the O/W template method were conducive to maintaining the integrity of microcapsules during spray-drying. The microcapsules, characterized by a spherical shape, exhibited superior encapsulation efficiency of 94.56%, surpassing the findings of previous investigations. Overall, these microcapsules exhibited long-term storage stability and low controllable release rates, which could be utilized as carriers for liposoluble actives.

13.
Foods ; 12(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37893735

RESUMO

Proteins provide the material foundation of all life activities and play an important role in the physiological and biochemical metabolism of the human body [...].

14.
Chem Asian J ; 18(4): e202201194, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36581747

RESUMO

Surface-enhanced Raman scattering (SERS), as a rapid and nondestructive biological detection method, holds great promise for clinical on spot and early diagnosis. In order to address the challenging demands of on spot detection of biomedical samples, a variety of strategies has been developed. These strategies include substrate structural and component engineering, data processing techniques, as well as combination with other analytical methods. This report summarizes the recent SERS developments for biomedical detection, and their promising applications in cancer detection, virus or bacterial infection detection, miscarriage spotting, neurological disease screening et al. The first part discusses the frequently used SERS substrate component and structures, the second part reports on the detection strategies for nucleic acids, proteins, bacteria, and virus, the third part summarizes their promising applications in clinical detection in a variety of illnesses, and the forth part reports on recent development of SERS in combination with other analytical techniques. The special merits, challenges, and perspectives are discussed in both introduction and conclusion sections.


Assuntos
Ácidos Nucleicos , Proteínas , Análise Espectral Raman/métodos
15.
Nanoscale ; 15(48): 19514-19521, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37987537

RESUMO

Multidomain dynamic manipulations for terahertz (THz) absorbers usually necessitate the orchestrated actions of several active elements, inevitably complicating the structural design and elongating the modulation time. Herein, we utilize the coupling between the total reflection prism and electrically-driven MoS2 to activate a tight field confinement in a deep-subwavelength interlayer, ultimately achieving frequency-agile absorption adjustments only with a gate voltage. Theoretical and simulation analysis results indicate that the redistributed electric field and susceptible dielectric response are attributed to the limited spatial near-field perturbation of surface plasmon resonances. We also demonstrate that perturbed MoS2 plasmon modes promote the formation of dual-phase singularities, significantly suppressing the attenuation of the absorption amplitude as large-scale frequency shifts, thereby extending the relative tuning range (WRTR) to 175.4%. These findings offer an efficient approach for expanding the horizon of THz absorption applications that require ultra-broadband and swift-response capabilities.

16.
Chemosphere ; 341: 139932, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619744

RESUMO

Birnessite plays a crucial role in regulating the fate of contaminants in soil, which is affected by the crystal structure of birnessite. In this study, the transformation of triclinic birnessite to hexagonal birnessite was examined at various pH values, and their reactivity towards norfloxacin was investigated. The findings indicate that the conversion from triclinic birnessite to hexagonal birnessite occurs under pH conditions lower than 7. The lower of the solution pH where the birnessite formed, the higher the surface reactivity. Throughout the transformation process, the migration of Mn3+ and the increased interlayer protons generated more reactive oxygen species, which enhanced the surface reactivity towards norfloxacin. Specifically, at a conversion pH of 1, the norfloxacin removal rate significantly increases from 14% to 97% compared to triclinic birnessite. The mechanism of norfloxacin removal by triclinic and hexagonal birnessite is illustrated. These findings provide valuable insights into the dynamic transformation of birnessites in aqueous environments with varying pH values and their impact on norfloxacin removal.


Assuntos
Manganês , Norfloxacino , Oxirredução , Manganês/química , Óxidos/química , Concentração de Íons de Hidrogênio
17.
Chemosphere ; 305: 135326, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35709846

RESUMO

In this study, a new low-cost carbon-based material was prepared via the carbonization of methylene blue adsorbed halloysite (CMH) at different temperatures in a nitrogen atmosphere, which was named CMH-T (T-Temperature). The performance of CMH-T was explored and the effects of initial pH values, catalyst dosage, phenol (PE) concentrations, peroxymonosulfate (PMS) concentrations, and water background compounds on PE degradation were investigated systematically. The results indicated that CMH800 exhibited the best performance to activate PMS for degrading PE. Specifically, 92% PE was degraded within 30 min with a constant rate (kobs) of 0.1186 min-1 in the CMH800/PMS system. Furthermore, CMH800 was efficient over a wide pH range (pH 3-9) and showed a slight inhibition to inorganic anions. Quenching experiments, electron spin resonance (ESR) analysis, and electrochemical analysis confirmed that PE was degraded through non-radical pathways dominated by single oxygen (1O2) and mediated electron transfer processes in the CMH800/PMS system. In addition, the predicted toxicity of intermediates through ECOSAR software based on QSAR (Quantitative Structure - Activity Relationship) model indicated that most of the intermediates had a low risk to water environment. Therefore, the CMH800 has a good potential for wastewater treatment applications.


Assuntos
Azul de Metileno , Fenol , Argila , Peróxidos/química , Fenóis , Água
18.
Water Res ; 219: 118529, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569277

RESUMO

A system of Cu2+/calcite/PDS was constructed to degrade sulfadiazine (SDZ). Different from the traditional Cu-mediated activation, a low concentration of Cu2+ that met drinking water standards (≤ 1 mg/L) transformed into Cu(Ⅱ) solid in the presence of calcite, and then enhanced the degradation of SDZ via PDS activation over a pH range from 3 to 9. According to scavenger and chemical probe experiments, Cu(Ⅲ), rather than radicals (hydroxyl radicals and sulfate radicals) and singlet oxygen, was the predominant reactive species, which was responsible for the degradation of SDZ. Based on the results of XRD, ATR-FTIR, and CV curves et al., CuCO3 was the main complex with high reactivity for PDS activation to form Cu(Ⅲ). Moreover, detailed degradation pathways of sulfadiazine were proposed according to the UPLC-ESI-MS/MS and their toxicity was predicted by ECOSAR. Besides, the real water matrix would not seriously affect the degradation of SDZ in the Cu2+/calcite/PDS system. In summary, this study reveals a new insight into the synergistic effect of Cu2+ and calcite on the SDZ degradation, and promotes an understanding of the environmental benefits of natural calcite.


Assuntos
Carbonato de Cálcio , Sulfadiazina , Espectrometria de Massas em Tandem
19.
Nanoscale ; 14(34): 12313-12321, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-35968803

RESUMO

Surface-enhanced Raman scattering (SERS) is a rapid and promising detection technique for trace molecules. A central goal of research in this area is to achieve the highly sensitive detection of molecules built on a systematic understanding of enhancement mechanisms. Herein, we develop a Ag cluster@rGO composite nanostructure, which utilizes strong molecular adsorption to achieve ultrahigh SERS sensitivity. Ag clusters are prepared without additional reducing agents, leaving a low carbon footprint in the fabrication process. Finite-difference time-domain (FDTD) simulations show strong electromagnetic field enhancements generated at the edges and interstices of Ag clusters due to the specificity of their structure. Density Functional Theory (DFT) calculations show that the HOMO-LUMO energy gap value is significantly reduced when Ag cluster@rGO forms a composite system with the target molecule, which enables efficient charge transfer between the substrate and molecules, resulting in charge transfer enhancement. A detection limit of 10-14 M using our substrate can be achieved for the environmental pollutant dye rhodamine 6G (Rh6G). The detection limits of bisphenol A (BPA) and its derivatives reach nanomolar levels with good signal stability. More importantly, we demonstrate the ability to rapidly screen BPA migration in Chinese Baijiu. Our SERS platform can be further developed for environmental pollution control and food safety.

20.
Ultrason Sonochem ; 88: 106075, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35753139

RESUMO

The combination of protein and flavonoids can ameliorate the problems of poor solubility and stability of flavonoids in utilization. In this study, soybean protein isolate pretreated by ultrasonication was selected as the embedding wall material, which was combined with luteolin to form a soybean protein isolate-luteolin nanodelivery system. The complexation effect and structural changes of soybean protein isolate (SPI) and ultrasonic pretreatment (100 W, 200 W, 300 W, 400 W and 500 W) of soybean protein isolate with luteolin (LUT) were compared, as well as the changes in digestion characteristics and antioxidant activity in vitro. The results showed that proper ultrasonic pretreatment increased the encapsulation efficacy, loading amount and solubility to 89.72%, 2.51 µg/mg and 90.56%. Appropriate ultrasonic pretreatment could make the particle size and the absolute value of ζ-potential of SPI-LUT nanodelivery system decrease and increase respectively. The FTIR and fluorescence results show that appropriate ultrasonic pretreatment could reduce α-helix, ß-sheet and random coil, increase ß-turn, and enhance fluorescence quenching. The thermodynamic evaluation results indicate that the ΔG < 0, ΔH > 0 and ΔS > 0, so the interaction of LUT with the protein was spontaneous and mostly governed by hydrophobic interactions. The XRD results show that the LUT was amorphous and completely wrapped by SPI. The DSC results showed that ultrasonic pretreatment could improve the thermal stability of SPI-LUT nanodelivery system to 112.66 ± 1.69 °C. Digestion and antioxidant analysis showed that appropriate ultrasonic pretreatment increased the LUT release rate and DPPH clearance rate of SPI-LUT nanodelivery system to 89.40 % and 55.63 % respectively. This study is a preliminary source for the construction of an SPI nanodelivery system with ultrasound pretreatment and the deep processing and utilization of fat-soluble active substances.


Assuntos
Luteolina , Proteínas de Soja , Disponibilidade Biológica , Solubilidade , Proteínas de Soja/química , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA