Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(1): 150-164.e15, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31883795

RESUMO

In eukaryotes, heterochromatin is generally located at the nuclear periphery. This study investigates the biological significance of perinuclear positioning for heterochromatin maintenance and gene silencing. We identify the nuclear rim protein Amo1NUPL2 as a factor required for the propagation of heterochromatin at endogenous and ectopic sites in the fission yeast genome. Amo1 associates with the Rix1PELP1-containing RNA processing complex RIXC and with the histone chaperone complex FACT. RIXC, which binds to heterochromatin protein Swi6HP1 across silenced chromosomal domains and to surrounding boundary elements, connects heterochromatin with Amo1 at the nuclear periphery. In turn, the Amo1-enriched subdomain is critical for Swi6 association with FACT that precludes histone turnover to promote gene silencing and preserve epigenetic stability of heterochromatin. In addition to uncovering conserved factors required for perinuclear positioning of heterochromatin, these analyses elucidate a mechanism by which a peripheral subdomain enforces stable gene repression and maintains heterochromatin in a heritable manner.


Assuntos
Epigênese Genética/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Repressão Epigenética/genética , Inativação Gênica , Hereditariedade , Histonas/genética , Histonas/metabolismo , Metilação , Proteínas Nucleares/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
2.
J Perianesth Nurs ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38878034

RESUMO

PURPOSE: The purpose of this study was to compare the effect of ultrasound-guided continuous erector spinae plane block to continuous thoracic paravertebral block on postoperative analgesia in elderly patients who underwent thoracoscopic lobectomy. DESIGN: Randomized controlled trial. METHODS: Elderly patients (N = 50) who underwent nonemergent thoracoscopic lobectomy in the thoracic surgery department of our hospital from January 2019 to December 2020 were selected and randomly divided into continuous erector spinae block (ESPB; n = 25) group and continuous thoracic paravertebral block (TPVB; n = 25) group. The patients in the two groups were guided by ultrasound with ESPB or TPVB before anesthesia induction. The visual analog scale at rest and cough in 2 hours, 6 hours, 8 hours, 12 hours, 24 hours, 48 hours after surgery, the supplementary analgesic dosage of tramadol, time of tube placement, the stay time in postanesthesia care unit (PACU), the first ambulation time after surgery, the length of postoperative hospital stay and postoperative complications were recorded. FINDINGS: There were no significant differences between the two groups in visual analog scale score at rest and cough at each time point and supplementary analgesic dosage of tramadol within 48 hours after surgery (P > .05). The time of tube placement and the postoperative hospital stay in ESPB group was significantly shorter than that in TPVB group (P < .05). There were no differences in PACU residence time and first ambulation time between the two groups (P > .05). There were 4 patients in TPVB group and 2 patients in ESPB group who had nausea and vomiting (P > .05), 1 case of pneumothorax and 1 case of fever in the TPVB group. There were no incision infections or respiratory depression requiring clinical intervention in either group. CONCLUSIONS: Both ESPB and TPVB alleviated the patients postoperative pain effectively for elderly patients underwent thoracoscopic lobectomy. Compared with TPVB, patients with ESPB have a shorter tube placement time, fewer complications and faster postoperative recovery.

3.
Opt Express ; 31(23): 38744-38760, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017971

RESUMO

Low-dimensional CsPbBr3 perovskite materials have gained widespread attention, derived from their remarkable properties and potential for numerous optoelectronic applications. Herein, the sample of CsPbBr3 microwires were prepared horizontally onto n-type InGaN film substrate using an in-plane solution growth method. The resulting CsPbBr3 microwire/InGaN heterojunction allows for the achievement of a highly sensitive and broadband photodetector. Particularly for the implementation in a self-supplying manner, the best-performing photodetector can achieve a superior On/Off ratio of 4.6×105, the largest responsivity ∼ 800.0 mA/W, a maximum detectivity surpassing 4.6× 1012 Jones, and a high external quantum efficiency approaching 86.5% upon 405 nm light illumination. A rapid response time (∼ 4.48 ms/7.68 ms) was also achieved. The as-designed CsPbBr3 microwire/InGaN heterojunction device without any encapsulation exhibits superior comprehensive stability. Besides, the device featuring as a single pixel imaging unit can readily detect simple images under broadband light illumination with a high spatial resolution, acknowledging its outstanding imaging capability. The robust photodetection properties could be derived from the intense absorption of CsPbBr3 MWs and high-efficiency charge carriers transporting toward the in-situ formed CsPbBr3/InGaN heterointerface. The results may offer an available strategy for the in-situ construction of best-performing low-dimensional perovskite heterojunction optoelectronic devices.

4.
Vet Res ; 54(1): 108, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993950

RESUMO

Lawsonia intracellularis, the etiologic agent of proliferative enteropathy (PE), is an obligate intracellular Gram-negative bacterium possessing a type III secretion system (T3SS), which enables the pathogen to translocate effector proteins into targeted host cells to modulate their functions. T3SS is a syringe-like apparatus consisting of a base, an extracellular needle, a tip, and a translocon. The translocon proteins assembled by two hydrophobic membrane proteins can form pores in the host-cell membrane, and therefore play an essential role in the function of T3SS. To date, little is known about the T3SS and translocon proteins of L. intracellularis. In this study, we first analyzed the conservation of the T3S apparatus between L. intracellularis and Yersinia, and characterized the putative T3S hydrophobic major translocon protein LI1158 and minor translocon protein LI1159 in the L. intracellularis genome. Then, by using Yersinia pseudotuberculosis as a surrogate system, we found that the full-length LI1158 and LI1159 proteins, but not the putative class II chaperone LI1157, were secreted in a - Ca2+ and T3SS-dependent manner and the secretion signal was located at the N terminus (aa 1-40). Furthermore, yeast-two hybrid experiments revealed that LI1158 and LI1159 could self-interact, and LI1159 could interact with LI1157. However, unlike CPn0809 and YopB, which are the major hydrophobic translocon proteins of the T3SS of C. pneumoniae and Yersinia, respectively, full-length LI1158 was non-toxic to both yeast and Escherichia coli cells, but full-length LI1159 showed certain toxicity to E. coli cells. Taken together, despite some differences from the findings in other bacteria, our results demonstrate that LI1158 and LI1159 may be the translocon proteins of L. intracellularis T3SS, and probably play important roles in the translocation of effector proteins at the early pathogen infection stage.


Assuntos
Lawsonia (Bactéria) , Animais , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Escherichia coli/metabolismo , Saccharomyces cerevisiae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Microb Cell Fact ; 22(1): 88, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37127628

RESUMO

Acetic acid and furfural (AF) are two major inhibitors of microorganisms during lignocellulosic ethanol production. In our previous study, we successfully engineered Zymomonas mobilis 532 (ZM532) strain by genome shuffling, but the molecular mechanisms of tolerance to inhibitors were still unknown. Therefore, this study investigated the responses of ZM532 and its wild-type Z. mobilis (ZM4) to AF using multi-omics approaches (transcriptomics, genomics, and label free quantitative proteomics). Based on RNA-Seq data, two differentially expressed genes, ZMO_RS02740 (up-regulated) and ZMO_RS06525 (down-regulated) were knocked out and over-expressed through CRISPR-Cas technology to investigate their roles in AF tolerance. Overall, we identified 1865 and 14 novel DEGs in ZM532 and wild-type ZM4. In contrast, 1532 proteins were identified in ZM532 and wild-type ZM4. Among these, we found 96 important genes in ZM532 involving acid resistance mechanisms and survival rates against stressors. Furthermore, our knockout results demonstrated that growth activity and glucose consumption of mutant strains ZM532∆ZMO_RS02740 and ZM4∆ZMO_RS02740 decreased with increased fermentation time from 42 to 55 h and ethanol production up to 58% in ZM532 than that in ZM532∆ZMO_RS02740. Hence, these findings suggest ZMO_RS02740 as a protective strategy for ZM ethanol production under stressful conditions.


Assuntos
Ácido Acético , Zymomonas , Ácido Acético/metabolismo , Zymomonas/genética , Furaldeído/metabolismo , Embaralhamento de DNA , Fermentação , Etanol/metabolismo
6.
Analyst ; 148(20): 4922-4938, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37743834

RESUMO

Cell sorting is an essential prerequisite for cell research and has great value in life science and clinical studies. Among the many microfluidic cell sorting technologies, label-free methods based on the size of different cell types have been widely studied. However, the heterogeneity in size for cells of the same type and the inevitable size overlap between different types of cells would result in performance degradation in size-based sorting. To tackle such challenges, deformation-assisted technologies are receiving more attention recently. Cell deformability is an inherent biophysical marker of cells that reflects the changes in their internal structures and physiological states. It provides additional dimensional information for cell sorting besides size. Therefore, in this review, we summarize the recent advances in deformation-assisted microfluidic cell sorting technologies. According to how the deformability is characterized and the form in which the force acts, the technologies can be divided into two categories: (1) the indirect category including transit-time-based and image-based methods, and (2) the direct category including microstructure-based and hydrodynamics-based methods. Finally, the separation performance and the application scenarios of each method, the existing challenges and future outlook are discussed. Deformation-assisted microfluidic cell sorting technologies are expected to realize greater potential in the label-free analysis of cells.

7.
Mol Cell ; 59(6): 1035-42, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26365378

RESUMO

Autophagy transports cytosolic materials into lysosomes/vacuoles either in bulk or selectively. Selective autophagy requires cargo receptor proteins, which usually link cargos to the macroautophagy machinery composed of core autophagy-related (Atg) proteins. Here, we show that fission yeast Nbr1, a homolog of mammalian autophagy receptor NBR1, interacts with and facilitates the transport of two cytosolic hydrolases into vacuoles, in a way reminiscent of the budding yeast cytoplasm-to-vacuole targeting (Cvt) pathway, a prototype of selective autophagy. We term this pathway Nbr1-mediated vacuolar targeting (NVT). Surprisingly, unlike the Cvt pathway, the NVT pathway does not require core Atg proteins. Instead, it depends on the endosomal sorting complexes required for transport (ESCRTs). NVT components colocalize with ESCRTs at multivesicular bodies (MVBs) and rely on ubiquitination for their transport. Our findings demonstrate the ability of ESCRTs to mediate highly selective autophagy of soluble cargos, and suggest an unexpected mechanistic versatility of autophagy receptors.


Assuntos
Autofagia , Proteínas Cromossômicas não Histona/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Transcrição/metabolismo , Vacúolos/metabolismo , Aminopeptidases/metabolismo , Proteínas Relacionadas à Autofagia , Transporte Proteico , Solubilidade , Ubiquitinação
8.
BMC Pregnancy Childbirth ; 23(1): 718, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817098

RESUMO

BACKGROUND: To study the validity of an artificial intelligence (AI) model for measuring fetal facial profile markers, and to evaluate the clinical value of the AI model for identifying fetal abnormalities during the first trimester. METHODS: This retrospective study used two-dimensional mid-sagittal fetal profile images taken during singleton pregnancies at 11-13+ 6 weeks of gestation. We measured the facial profile markers, including inferior facial angle (IFA), maxilla-nasion-mandible (MNM) angle, facial-maxillary angle (FMA), frontal space (FS) distance, and profile line (PL) distance using AI and manual measurements. Semantic segmentation and landmark localization were used to develop an AI model to measure the selected markers and evaluate the diagnostic value for fetal abnormalities. The consistency between AI and manual measurements was compared using intraclass correlation coefficients (ICC). The diagnostic value of facial markers measured using the AI model during fetal abnormality screening was evaluated using receiver operating characteristic (ROC) curves. RESULTS: A total of 2372 normal fetuses and 37 with abnormalities were observed, including 18 with trisomy 21, 7 with trisomy 18, and 12 with CLP. Among them, 1872 normal fetuses were used for AI model training and validation, and the remaining 500 normal fetuses and all fetuses with abnormalities were used for clinical testing. The ICCs (95%CI) of the IFA, MNM angle, FMA, FS distance, and PL distance between the AI and manual measurement for the 500 normal fetuses were 0.812 (0.780-0.840), 0.760 (0.720-0.795), 0.766 (0.727-0.800), 0.807 (0.775-0.836), and 0.798 (0.764-0.828), respectively. IFA clinically significantly identified trisomy 21 and trisomy 18, with areas under the ROC curve (AUC) of 0.686 (95%CI, 0.585-0.788) and 0.729 (95%CI, 0.621-0.837), respectively. FMA effectively predicted trisomy 18, with an AUC of 0.904 (95%CI, 0.842-0.966). MNM angle and FS distance exhibited good predictive value in CLP, with AUCs of 0.738 (95%CI, 0.573-0.902) and 0.677 (95%CI, 0.494-0.859), respectively. CONCLUSIONS: The consistency of fetal facial profile marker measurements between the AI and manual measurement was good during the first trimester. The AI model is a convenient and effective tool for the early screen for fetal trisomy 21, trisomy 18, and CLP, which can be generalized to first-trimester scanning (FTS).


Assuntos
Síndrome de Down , Feminino , Gravidez , Humanos , Primeiro Trimestre da Gravidez , Síndrome de Down/diagnóstico , Estudos Retrospectivos , Síndrome da Trissomía do Cromossomo 18 , Inteligência Artificial , Ultrassonografia Pré-Natal/métodos , Feto/diagnóstico por imagem , Segundo Trimestre da Gravidez
9.
Biosci Biotechnol Biochem ; 88(1): 26-36, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37950567

RESUMO

This study aimed to explore the function of nucleolar protein interacting with the FHA domain of MKI67 (NIFK) on colorectal cancer (CRC) and its associated molecular mechanisms. NIFK was upregulated in CRC tissues and cells. NIFK silencing resulted in reduced cell growth and metastasis, as well as in promoted apoptosis in CRC cells. Moreover, NIFK silencing was also confirmed to inhibit lipid accumulation and decrease fatty acid synthesis via downregulating lipogenic enzymes in CRC cells. Gene set enrichment analysis and western blot co-verified that NIFK silencing inhibited MYC proto-oncogene, bHLH transcription factor (MYC) pathway in CRC cells. In addition, we also revealed that NIFK silencing function on cell growth, apoptosis, metastasis, and fatty acid metabolism in CRC might be cancelled after c-MYC overexpression. Silencing NIFK could inhibit cell growth and metastasis, and promoted apoptosis, as well as regulated fatty acid metabolism by inhibiting MYC pathway in CRC.


Assuntos
Neoplasias Colorretais , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Ácidos Graxos , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
10.
Sensors (Basel) ; 23(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36904975

RESUMO

The manipulation of biomedical particles, such as separating circulating tumor cells from blood, based on standing surface acoustic wave (SSAW) has been widely used due to its advantages of label-free approaches and good biocompatibility. However, most of the existing SSAW-based separation technologies are dedicated to isolate bioparticles in only two different sizes. It is still challenging to fractionate various particles in more than two different sizes with high efficiency and accuracy. In this work, to tackle the problems of low efficiency for multiple cell particle separation, integrated multi-stage SSAW devices with different wavelengths driven by modulated signals were designed and studied. A three-dimensional microfluidic device model was proposed and analyzed using the finite element method (FEM). In addition, the effect of the slanted angle, acoustic pressure, and the resonant frequency of the SAW device on the particle separation were systemically studied. From the theoretical results, the separation efficiency of three different size particles based on the multi-stage SSAW devices reached 99%, which was significantly improved compared with conventional single-stage SSAW devices.

11.
Sensors (Basel) ; 23(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688058

RESUMO

The differential count of white blood cells (WBCs) can effectively provide disease information for patients. Existing stained microscopic WBC classification usually requires complex sample-preparation steps, and is easily affected by external conditions such as illumination. In contrast, the inconspicuous nuclei of stain-free WBCs also bring great challenges to WBC classification. As such, image enhancement, as one of the preprocessing methods of image classification, is essential in improving the image qualities of stain-free WBCs. However, traditional or existing convolutional neural network (CNN)-based image enhancement techniques are typically designed as standalone modules aimed at improving the perceptual quality of humans, without considering their impact on advanced computer vision tasks of classification. Therefore, this work proposes a novel model, UR-Net, which consists of an image enhancement network framed by ResUNet with an attention mechanism and a ResNet classification network. The enhancement model is integrated into the classification model for joint training to improve the classification performance for stain-free WBCs. The experimental results demonstrate that compared to the models without image enhancement and previous enhancement and classification models, our proposed model achieved a best classification performance of 83.34% on our stain-free WBC dataset.


Assuntos
Núcleo Celular , Corantes , Humanos , Aumento da Imagem , Leucócitos , Iluminação
12.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047645

RESUMO

Ultrabithorax (Ubx) is a member of the Hox gene group involved in cell fate decisions, cell proliferation and organ identity. Its function has been extensively researched in Drosophila melanogaster but little is known about it in Lepidoptera. To uncover the function of Ubx in the development of lepidopterans, we constructed the Ubx overexpression (UbxOE) strain based on the Nistari strain of Bombyx mori. The UbxOE strain showed a small body size, transparent intersegmental membrane and abnormal posterior silk gland (PSG). In the current study, we focused on the effect of Ubx overexpression on the posterior silk gland. As the major protein product of PSG, the mRNA expression of fibroin heavy chain (Fib-H) and fibroin light chain (Fib-L) was upregulated three times in UbxOE, but the protein expression of Fib-H and Fib-L was not significantly different. We speculated that the overexpression of Ubx downregulated the expression of Myc and further caused abnormal synthesis of the spliceosome and ribosome. Abnormalities of the spliceosome and ribosome affected the synthesis of protein in the PSG and changed its morphology.


Assuntos
Bombyx , Proteínas de Drosophila , Fibroínas , Animais , Bombyx/metabolismo , Fibroínas/metabolismo , Drosophila melanogaster/genética , Genes Homeobox , Seda/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Drosophila/metabolismo
13.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771063

RESUMO

The urgent problem to be solved in heavy oil exploitation is to reduce viscosity and improve fluidity. Emulsification and viscosity reduction technology has been paid more and more attention and its developments applied. This paper studied the viscosity reduction performance of three types of viscosity reducers and obtained good results. The viscosity reduction rate, interfacial tension, and emulsification performance of three types of viscosity reducers including anionic sulfonate, non-ionic (polyether and amine oxide), and amphoteric betaine were compared with Daqing crude oil. The results showed that the viscosity reduction rate of petroleum sulfonate and betaine was 75-85%. The viscosity reduction rate increased as viscosity reducer concentration increased. An increase in the oil-water ratio and polymer decreased viscosity reduction. When the concentration of erucamide oxide was 0.2%, the ultra-low interfacial tension was 4.41 × 10-3 mN/m. When the oil-water ratio was 1:1, the maximum water separation rates of five viscosity reducers were different. With an increase in the oil-water ratio, the emulsion changed from o/w emulsion to w/o emulsion, and the stability was better. Erucamide oxide and erucic betaine had good viscosity reduction and emulsification effects on Daqing crude oil. This work can enrich knowledge of the viscosity reduction of heavy oil systems with low relative viscosity and enrich the application of viscosity reducer varieties.

14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(12): 1447-1450, 2023 Dec 10.
Artigo em Zh | MEDLINE | ID: mdl-37994121

RESUMO

Birth defects are an important factor for the quality of newborn population. With the development of molecular genetic technology, an increasing number of genetic disorders leading to birth defects can now be detected. The lack of the knowledge for the basics and clinical applications of molecular genetic techniques have emerged as a shortcoming for primary care physicians who have formed the first tier prevention for birth defects. Currently, government has paid more attention to the above problems and formulated more training programs for primary obstetricians and gynecologists, e.g., "Prenatal Screening and Prenatal Diagnosis Post Training Program", "National Birth Defects Training Program", "National Primary Obstetrician Training Program". To some extent, such programs have met the urgent need for birth defect prevention in primary hospitals. But at the same time, some problems have also emerged. For instance, the knowledge for birth defects among primary obstetricians and gynecologists is poor, and there is lack of young personnel. This article has aimed to discuss the strategies to systematically improve the ability for preventing birth defects among primary care physicians by analyzing the obstacles and challenges for primary obstetricians and gynecologists in the era of molecular genetic testing.


Assuntos
Ginecologia , Obstetrícia , Feminino , Gravidez , Recém-Nascido , Humanos , Ginecologista , Obstetra , Biologia Molecular
15.
Fetal Pediatr Pathol ; 42(2): 320-326, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36048092

RESUMO

Background: Chondroblastoma is a primary bone tumor typically arising from the intramedullary space of the epiphysis or epimetaphysis. A non-epiphyseal chondroblastoma is uncommon. Case report: An 11-year-old girl presented with an eccentric cortical osteolytic lesion in the distal femur metaphysis. The typical morphology, diffuse H3.3 K36M immunohistochemical expression and H3F3B point mutation (c. 110A > T) unequivocally supported the diagnosis of chondroblastoma. Discussion: We described a non-epiphyseal cortical-based chondroblastoma involving the distal femur harboring the typical H3F3B mutation. Non-epiphyseal chondroblastoma may harbor the H3F3B mutation.


Assuntos
Neoplasias Ósseas , Condroblastoma , Criança , Feminino , Humanos , Neoplasias Ósseas/diagnóstico , Condroblastoma/diagnóstico , Condroblastoma/genética , Condroblastoma/patologia , Epífises/metabolismo , Epífises/patologia , Fêmur , Mutação
16.
Proteomics ; : e2200428, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36574226

RESUMO

In birds, embryonic gonads of females develop in a way different from mammals, with the left one develops into a functional ovary, while the right one degenerates during embryogenesis. Here, we examined the proteomics profiles of the female and male left and right gonads at embryonic day 6.5 (E6.5) with the label free tandem mass spectrometry proteomics technique. The relative protein abundance of the left and right gonads of female and male embryos was determined to identify their differential proteins. Overall, a total of 7726 proteins were identified, of which 79 and 54 proteins were significantly different in female and male right gonads compared with female left gonads and male left gonads respectively. Bioinformatics analysis showed that the proteins DMRT1, ZFPM2, TSHZ3 were potentially associated with the degeneration of the right gonads in female embryos. The proteomics in this study provide clues for further elucidation of the pathways of sex determination, sex differentiation, and right gonadal degeneration in birds.

17.
Anal Chem ; 94(16): 6394-6402, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35416029

RESUMO

A fully automated and label-free sample-to-answer white blood cell (WBC) cytometry platform for rapid immune state monitoring is demonstrated. The platform integrates (1) a WBC separation process using the multidimensional double spiral (MDDS) device and (2) an imaging process where images of the separated WBCs are captured and analyzed. Using the deep-learning-based image processing technique, we analyzed the captured bright-field images to classify the WBCs into their subtypes. Furthermore, in addition to cell classification, we can detect activation-induced morphological changes in WBCs for functional immune assessment, which could allow the early detection of various diseases. The integrated platform operates in a rapid (<30 min), fully automated, and label-free manner. The platform could provide a promising solution to future point-of-care WBC diagnostics applications.


Assuntos
Processamento de Imagem Assistida por Computador , Leucócitos
18.
J Virol ; 95(15): e0056021, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980602

RESUMO

Currently, there are no approved drugs for the treatment of flavivirus infection. Accordingly, we tested the inhibitory effects of the novel θ-defensin retrocyclin-101 (RC-101) against flavivirus infection and investigated the mechanism underlying the potential inhibitory effects. First, RC-101 robustly inhibited both Japanese encephalitis virus (JEV) and Zika virus (ZIKV) infections. RC-101 exerted inhibitory effects on the entry and replication stages. Results also indicated that the nonstructural protein NS2B-NS3 serine protease might serve as a potential viral target. Furthermore, RC-101 inhibited protease activity at the micromolar level. We also demonstrated that with respect to the glycoprotein E protein of flavivirus, the DE loop of domain III (DIII), which is the receptor-binding domain of the E protein, might serve as another viral target of RC-101. Moreover, a JEV DE mutant exhibited resistance to RC-101, which was associated with deceased binding affinity of RC-101 to DIII. These findings provide a basis for the development of RC-101 as a potential candidate for the treatment of flavivirus infection. IMPORTANCE Retrocyclin is an artificially humanized circular θ-defensin peptide, containing 18 residues, previously reported to possess broad antimicrobial activity. In this study, we found that retrocyclin-101 inhibited flavivirus (ZIKV and JEV) infections. Retrocyclin-101 inhibited NS2B-NS3 serine protease activity, suggesting that the catalytic triad of the protease is the target. Moreover, retrocyclin-101 bound to the DE loop of the E protein of flavivirus, which prevented its entry.


Assuntos
Antivirais/farmacologia , Encefalite Japonesa/tratamento farmacológico , Peptídeos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Infecção por Zika virus/tratamento farmacológico , Animais , Chlorocebus aethiops , Cricetinae , Defensinas/química , Vírus da Encefalite Japonesa (Espécie)/crescimento & desenvolvimento , Humanos , Domínios Proteicos/genética , Células Vero , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Zika virus/crescimento & desenvolvimento
19.
Appl Environ Microbiol ; 88(3): e0216121, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34818110

RESUMO

Zymomonas mobilis (Z. mobilis) is a potential candidate strain for consolidated bioprocessing (CBP) in lignocellulosic biorefinery. However, the low-level secretion of cellulases limits this CBP process, and the mechanism of protein secretion that is affected by cell wall peptidoglycan is also not well understood. Here, we constructed several penicillin-binding protein (PBP)-deficient strains derived from Z. mobilis S192 to perturb the cell wall peptidoglycan network and then investigated the effects of peptidoglycan on the endoglucanase secretion. The results showed that extracellular recombinant endoglucanase production was significantly enhanced in PBP mutant strains, notably, Δ1089/0959 (4.09-fold) and Δ0959 (5.76-fold) in comparison to parent strains. For PBP-deficient strains, the growth performance was not significantly inhibited, but cell morphology was altered. In addition, enhanced antibiotic sensitivity and reduced inhibitor tolerance were also detected in our study. The concentration of intracellular soluble peptidoglycan was increased, especially for single-gene deletion. Outer membrane permeability of PBP-deficient strains was also improved, notably, Δ1089/0959 (1.14-fold) and Δ0959 (1.07-fold), which might explain the increased endoglucanase extracellular secretion. Our findings indicated that PBP-deficient Z. mobilis was capable of increasing endoglucanase extracellular secretion via cell wall peptidoglycan disturbance, and it will provide a foundation for the development of CBP technology in Z. mobilis in the future. IMPORTANCE Cell wall peptidoglycan has the function to maintain cell robustness and acts as the barrier to secret recombinant proteins from the cytoplasm to extracellular space in Z. mobilis and other bacteria. Herein, we perturbed the peptidoglycan synthesis network via knocking out PBPs (ZMO0197, ZMO0959, ZMO1089) to enhance recombinant endoglycanase extracellular secretion in Z. mobilis S912. This study could lay the foundation for understanding the regulatory network of cell wall synthesis and guide the construction of CBP strains in Z. mobilis.


Assuntos
Celulase , Celulases , Zymomonas , Celulase/genética , Celulase/metabolismo , Celulases/metabolismo , Proteínas de Ligação às Penicilinas , Peptidoglicano/metabolismo , Zymomonas/genética , Zymomonas/metabolismo
20.
Opt Express ; 30(14): 24773-24787, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237023

RESUMO

Interface engineering in the fabrication of low-dimensional optoelectronic devices has been highlighted in recent decades to enhance device characteristics such as reducing leakage current, optimizing charge transport, and modulating the energy-band structure. In this paper, we report a dielectric interface approach to realize one-dimensional (1D) wire near-infrared light-emitting devices with high brightness and enhanced emission efficiency. The light-emitting diode is composed of a zinc oxide microwire covered by a silver nanolayer (Ag@ZnO MW), magnesium oxide (MgO) buffer layer, and p-type gallium arsenide (GaAs) substrate. In the device structure, the insertion of a MgO dielectric layer in the n-ZnO MW/p-GaAs heterojunction can be used to modulate the device features, such as changing the charge transport properties, reducing the leakage current and engineering the band alignment. Furthermore, the cladding of the Ag nanolayer on the ZnO MW can optimize the junction interface quality, thus reducing the turn-on voltage and increasing the current injection and electroluminescence (EL) efficiency. The combination of MgO buffer layer and Ag nanolayer cladding can be utilized to achieve modulating the carrier recombination path, interfacial engineering of heterojunction with optimized band alignment and electronic structure in these carefully designed emission devices. Besides, the enhanced near-infrared EL and improved physical contact were also obtained. The study of current transport modulation and energy-band engineering proposes an original and efficient route for improving the device performances of 1D wire-type heterojunction light sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA