Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(29): 13176-13180, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38976359

RESUMO

An interpenetrated indium(III) metal-organic framework (MOF), NTUniv-73, with a rarely reported tetrameric indium cluster is developed for streamlining ethylene purification from C2 gases. At 298 K, the adsorption capacities exhibited a complete reversal sequence of C2H6 > C2H2 > C2H4. Grand canonical Monte Carlo simulation indicated that the corners in a octahedral cage facilitated the C2H2/C2H4 separation, while the pocket-like aperture situated between adjacent octahedral cages allows for full contact of C2H6. Breakthrough experiments illustrated that NTUniv-73 could yield pure C2H4 in a single step with a productivity of 0.42 mmol g-1.

2.
Inorg Chem ; 63(3): 1507-1512, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38198122

RESUMO

Single-step ethylene (C2H4) production from acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) mixtures was realized via the strategy of a flow channel with recognition corners in MOF NTUniv-64. Both the uptake amounts and the enthalpy of adsorption (Qst) showed the same order of C2H2 > C2H6 > C2H4. Breakthrough testing also verified the above data and the C2H4 purification ability. Grand Canonical Monte Carlo (GCMC) simulations indicated that uneven corners could precisely detain C2H2 and C2H6, in which the C-H···π interaction distance between C2H2 (2.84 Å) and C2H6 (3.03 Å) and the framework was shorter than that of C2H4 (3.85 Å).

3.
Inorg Chem ; 63(1): 50-55, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38150825

RESUMO

One-step C2H4 purification from a mixture of C2H2/C2H4/C2H6 could be achieved by metal-organic framework (MOF) NTUniv-70 with an F-functional group. The selectivities of C2H4/C2H6 and C2H4/C2H2 of NTUnvi-70 based on ideal adsorbed solution theory were at least twice that of the original MOF platform, which was in line with the enthalpy of adsorption (Qst) and breakthrough testing. Grand canonical Monte Carlo simulations indicated that the C-H···F interactions played an important role in enhanced C2H4/C2H6 and C2H4/C2H2 adsorption selectivities.

4.
Inorg Chem ; 63(28): 12691-12696, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38949263

RESUMO

The single-step purification of ethylene (C2H4) from a mixture of carbon dioxide (CO2), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) was achieved through MOF Compound-1, where the aromatic pore surface and carboxylates selectively recognized C2H6 and CO2, respectively, resulting in a reversal of the adsorption orders for both gases (C2H6 > C2H4 and CO2 > C2H4). Breakthrough testing verified that the C2H4 purification ability could be enhanced 2.6 times after adding impure CO2. Grand Canonical Monte Carlo (GCMC) simulations demonstrate that there are interactions between CO2 and C2H6 molecules as well as between CO2 molecules themselves. These interactions contribute to the enhancement of the C2H4 purification ability upon the addition of CO2 and the increased adsorption of CO2.

5.
Angew Chem Int Ed Engl ; 63(14): e202319153, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38356309

RESUMO

As a sustainable valorization route, electrochemical glycerol oxidation reaction (GOR) involves in formation of key OH* and selective adsorption/cleavage of C-C(O) intermediates with multi-step electron transfer, thus suffering from high potential and poor formate selectivity for most non-noble-metal-based electrocatalysts. So, it remains challenging to understand the structure-property relationship as well as construct synergistic sites to realize high-activity and high-selectivity GOR. Herein, we successfully achieve dual-high performance with low potentials and superior formate selectivity for GOR by forming synergistic Lewis and Brønsted acid sites in Ni-alloyed Co-based spinel. The optimized NiCo oxide solid-acid electrocatalyst exhibits low reaction potential (1.219 V@10 mA/cm2) and high formate selectivity (94.0 %) toward GOR. In situ electrochemical impedance spectroscopy and pH-dependence measurements show that the Lewis acid centers could accelerate OH* production, while the Brønsted acid centers are proved to facilitate high-selectivity formation of formate. Theoretical calculations reveal that NiCo alloyed oxide shows appropriate d-band center, thus balancing adsorption/desorption of C-O intermediates. This study provides new insights into rationally designing solid-acid electrocatalysts for biomass electro-upcycling.

6.
J Phys Chem Lett ; 15(27): 7036-7044, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38949737

RESUMO

Fast-decaying scintillators show subnanoseconds or nanoseconds lifetime and high time resolution, making them important in nuclear physics, medical diagnostics, scientific research, and other fields. Metal halide perovskites (MHPs) show great potential for scintillator applications owing to their easy synthesis procedure and attractive optical properties. However, MHPs scintillators still need further improvement in decay lifetime. To optimize the decay lifetime, great progress has been achieved recently. In this Perspective, we first summarize the structural characteristics of MHPs in various dimensions, which brings different exciton behaviors. Then, recent advances in designing fast-decaying MHPs according to different exciton behaviors have been concluded, focusing on the photophysical mechanisms to achieve fast-decaying lifetimes. These advancements in decay lifetimes could facilitate the MHPs scintillators in advanced applications, such as time-of-flight positron emission tomography (TOF-PET), photon-counting computed tomography (PCCT), etc. Finally, the challenges and future opportunities are discussed to provide a roadmap for designing novel fast-decaying MHPs scintillators.

7.
J Phys Chem Lett ; 15(15): 4158-4166, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38597419

RESUMO

All-inorganic CsPbI2Br perovskite is striking as a result of the reasonable band gap and thermal stability. However, the notorious air instability, unsatisfactory conversion efficiencies, and toxic water-soluble Pb2+ ions have greatly limited the further development of CsPbI2Br-based devices. Herein, a facile strategy is developed to prepare efficient and air-stable CsPbI2Br-based perovskite solar cells (PSCs) with in situ lead leakage protection. With the introduction of 2,2'-dihydroxy-4,4'-dimethoxy-5,5'-disulfobenzophenone disodium salt (BP-9) into the CsPbI2Br precursor solution, the crystallization of perovskite can be regulated at a reduced trap density, the uncoordinated Pb2+ ions and electron-rich defects in the structure can be passivated to suppress non-radiative recombination, and the energy level arrangement can be optimized to improve charge carrier transport. Consequently, the optimized PSC achieved a championship efficiency of 17.11%, accompanied by negligible J-V hysteresis and remarkably improved air stability. More importantly, the strong chelation of BP-9 with water-soluble Pb2+ ions minimizes the leakage of toxic lead in the perovskite structure.

8.
Chem Commun (Camb) ; 60(16): 2184-2187, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38295377

RESUMO

Herein, we report a nanocomposite electrocatalyst with coupled Cu and NiO, showing a high Faraday efficiency of 97% and excellent ammonia production rate (450 mg h-1 cm-2) for nitrate reduction. In situ UV-vis spectroscopic studies confirmed that the synergy between NiO and Cu could avoid NO2- enrichment and promote tandem nitrate reduction to ammonia synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA