Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 34(46): e2107941, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34794204

RESUMO

A new member of low-dimensional structures with a high aspect ratio (LDHA) is introduced. For the first time, commodity polymer is processed into LDHA, which has long been stagnated by the lack of suitable processing techniques. The key to solve the current bottleneck is to overcome the trade-off between kinetic processability and thermodynamic stability. These two factors are both highly determined by intermolecular interaction level (IIL). Thus with a wide tuning range of IIL, ultrahigh molecular weight polyethylene (UHMWPE) is selected and investigated to break through the trade-off. Polymeric LDHA preparation needs both thinning and stiffening. By focusing on one then the other sequentially, they are realized simultaneously. Thus the over sixty-year-old material is finally thinned down by seven orders of magnitude into a 65.5 nm thick and 0.64 m2 large lamellar-thin framework (LTF). LTF exhibits a series of exceptional properties such as over-95% transparency, and seven times higher specific strength referred to steel. For the first time, cryogenic electron microscopy (Cryo-EM) is utilized to observe commodity polymers directly. This new LDHA material is promising to expand the scale boundaries of both fundamental research and practical applications, not only for UHMWPE, but also for more commodity polymers to come.

2.
Polymers (Basel) ; 11(6)2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163659

RESUMO

Fabricating high-performance MXene-based polymer nanocomposites is a huge challenge because of the poor dispersion and interfacial interaction of MXene nanosheets in the polymer matrix. To address the issue, MXene nanosheets were successfully exfoliated and subsequently modified by long-chain cationic agents with different chain lengths, i.e., decyltrimethylammonium bromide (DTAB), octadecyltrimethylammonium bromide (OTAB), and dihexadecyldimethylammonium bromide (DDAB). With the long-chain groups on their surface, modified Ti3C2 (MXene) nanosheets were well dispersed in N,N-dimethylformamide (DMF), resulting in the formation of uniform dispersion and strong interfacial adhesion within a polystyrene (PS) matrix. The thermal stability properties of cationic modified Ti3C2/PS nanocomposites were improved considerably with the temperatures at 5% weight loss increasing by 20 °C for DTAB-Ti3C2/PS, 25 °C for OTAB-Ti3C2/PS and 23 °C for DDAB-Ti3C2/PS, respectively. The modified MXene nanosheets also enhanced the flame-retardant properties of PS. Compared to neat PS, the peak heat release rate (PHRR) was reduced by approximately 26.4%, 21.5% and 20.8% for PS/OTAB-Ti3C2, PS/DDAB-Ti3C2 and PS/DTAB-Ti3C2, respectively. Significant reductions in CO and CO2 productions were also obtained in the cone calorimeter test and generally lower pyrolysis volatile products were recorded by PS/OTAB-Ti3C2 compared to pristine PS. These property enhancements of PS nanocomposites are attributed to the superior dispersion, catalytic and barrier effects of Ti3C2 nanosheets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA