Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(12): 21269-21280, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859485

RESUMO

The projection of fringes plays an essential role in many applications, such as fringe projection profilometry and structured illumination microscopy. However, these capabilities are significantly constrained in environments affected by optical scattering. Although recent developments in wavefront shaping have effectively generated high-fidelity focal points and relatively simple structured images amidst scattering, the ability to project fringes that cover half of the projection area has not yet been achieved. To address this limitation, this study presents a fringe projector enabled by a neural network, capable of projecting fringes with variable periodicities and orientation angles through scattering media. We tested this projector on two types of scattering media: ground glass diffusers and multimode fibers. For these scattering media, the average Pearson's correlation coefficients between the projected fringes and their designed configurations are 86.9% and 79.7%, respectively. These results demonstrate the effectiveness of the proposed neural network enabled fringe projector. This advancement is expected to broaden the scope of fringe-based imaging techniques, making it feasible to employ them in conditions previously hindered by scattering effects.

2.
Phys Rev Lett ; 132(17): 173801, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38728719

RESUMO

Ultrafast imaging can capture the dynamic scenes with a nanosecond and even femtosecond temporal resolution. Complementarily, phase imaging can provide the morphology, refractive index, or thickness information that intensity imaging cannot represent. Therefore, it is important to realize the simultaneous ultrafast intensity and phase imaging for achieving as much information as possible in the detection of ultrafast dynamic scenes. Here, we report a single-shot intensity- and phase-sensitive compressive sensing-based coherent modulation ultrafast imaging technique, shortened as CS-CMUI, which integrates coherent modulation imaging, compressive imaging, and streak imaging. We theoretically demonstrate through numerical simulations that CS-CMUI can obtain both the intensity and phase information of the dynamic scenes with ultrahigh fidelity. Furthermore, we experimentally build a CS-CMUI system and successfully measure the intensity and phase evolution of a multimode Q-switched laser pulse and the dynamical behavior of laser ablation on an indium tin oxide thin film. It is anticipated that CS-CMUI enables a profound comprehension of ultrafast phenomena and promotes the advancement of various practical applications, which will have substantial impact on fundamental and applied sciences.

3.
Chemistry ; : e202402766, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302815

RESUMO

Noncovalent interactions (NCIs) are crucial for the formation and stability of host-guest complexes, which have wide-ranging implications across various fields, including biology, chemistry, materials science, pharmaceuticals, and environmental science. However, since NCIs are relatively weak and sensitive to bulk perturbation, direct and accurate measurement of their absolute strength has always been a significant challenge. This concept article aims to demonstrate the gas-phase electrospray ionization (ESI)-negative ion photoelectron spectroscopy (NIPES) as a direct and precise technique to measure the absolute interaction strength, probe nature of NCIs, and reveal the electronic structural information for host-guest complexes. Our recent studies in investigating various host-guest complexes that involve various types of NCIs such as anion-π, (di)hydrogen bonding, charge-separated ionic interactions, are overviewed. Finally, a summary and outlook are provided for this field.

4.
J Phys Chem A ; 128(28): 5500-5507, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38968614

RESUMO

A series of anionic transition metal halides, OsCln- (n = 3-5), have been investigated using a newly developed, home-constructed, cryogenic anion cluster photoelectron spectroscopy. The target anionic species are generated through collision-induced dissociation in a two-stage ion funnel. The measured vertical detachment energies (VDEs) are 3.48, 4.54, and 4.81 eV for n = 3, 4, and 5, respectively. Density functional theory calculations at the B3LYP-D3(BJ)//aug-cc-pVTZ(-pp) level predict the lowest energy structures of the atomic form of OsCln- (n = 3-5) to be a quintet triangle, quartet square, and quintet square-based pyramid, respectively. The CCSD(T)-calculated VDEs and corresponding adiabatic detachment energies agree well with our experimental measurements. Analysis of the corresponding frontier molecular orbitals and charge density differences suggests that the d-orbitals of the transition metal Os play a primary role in the single-photon detachment processes, and the detached electrons originating from different molecular orbitals are distinguishable.

5.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38341690

RESUMO

We present a joint experimental and computational study on the geometric and electronic structures of deprotonated sulfamic acid (SA) clusters [(SA)n-H]- (n = 1, 2) employing negative ion photoelectron spectroscopy and high-level ab initio calculations. The photoelectron spectra provide the vertical/adiabatic detachment energy (VDE/ADE) of the sulfamate anion (SM-) H2N●SO3- at 4.85 ± 0.05 and 4.58 ± 0.08 eV, respectively, and the VDE and ADE of the SM-●SA dimer at 6.41 ± 0.05 and 5.87 ± 0.08 eV, respectively. The significantly increased electron binding energies of the dimer confirm the enhanced electronic stability upon the addition of one SA molecule. The CCSD(T)-predicted VDEs/ADEs agree excellently with the experimental data, confirming the identified structures as the most stable ones. Two types of dimer isomers possessing different hydrogen bonding (HB) motifs are identified, corresponding to SM- binding to a zwitterionic SA (SM-●SAz) and a canonical SA (SM-●SAc), respectively. Two N-H⋯O HBs and one superior O-H⋯O HB are formed in the lowest-lying SM-●SAc, while SM-●SAz has three moderate N-H⋯O HBs, with the former being 4.71 kcal/mol more stable. Further theoretical analyses reveal that the binding strength advantage of SM-●SAc over SM-●SAz arises from its significant contributions of orbital interactions between fragments, illustrating that sulfamate strongly interacts with its parent SA acid and preferably chooses the canonical SA in the subsequent cluster formations. Given the prominent presence of SA, this study provides the first evidence that the canonical dimer model of sulfamic acid should exist as a superior configuration during cluster growth.

6.
J Chem Phys ; 161(16)2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39435838

RESUMO

We report the experimental observation of the delayed fragmentation of the weakly bound dimer Kr2+ produced through the single ionization of Kr2 by a femtosecond laser field. The observed time delay between ionization and fragmentation, which reflects the survival time of the resulting Kr2+, is measured on the microsecond timescale. A detailed analysis of the kinetic energy releases of the ejected fragments and photoelectrons suggests that this delayed fragmentation arises from the radiative decay of the long-lived Kr2+, transitioning from the bound state II(1/2u) to the repulsive state I(1/2g).

7.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38341708

RESUMO

We launched a combined negative ion photoelectron spectroscopy and multiscale theoretical investigation on the geometric and electronic structures of a series of acetonitrile-solvated dodecaborate clusters, i.e., B12H122-·nCH3CN (n = 1-4). The electron binding energies of B12H122-·nCH3CN are observed to increase with cluster size, suggesting their enhanced electronic stability. B3LYP-D3(BJ)/ma-def2-TZVP geometry optimizations indicate each acetonitrile molecule binds to B12H122- via a threefold dihydrogen bond (DHB) B3-H3 ⁝⁝⁝ H3C-CN unit, in which three adjacent nucleophilic H atoms in B12H122- interact with the three methyl hydrogens of acetonitrile. The structural evolution from n = 1 to 4 can be rationalized by the surface charge redistributions through the restrained electrostatic potential analysis. Notably, a super-tetrahedral cluster of B12H122- solvated by four acetonitrile molecules with 12 DHBs is observed. The post-Hartree-Fock domain-based local pair natural orbital- coupled cluster singles, doubles, and perturbative triples [DLPNO-CCSD(T)] calculated vertical detachment energies agree well with the experimental measurements, confirming the identified isomers as the most stable ones. Furthermore, the nature and strength of the intermolecular interactions between B12H122- and CH3CN are revealed by the quantum theory of atoms-in-molecules and the energy decomposition analysis. Ab initio molecular dynamics simulations are conducted at various temperatures to reveal the great kinetic and thermodynamic stabilities of the selected B12H122-·CH3CN cluster. The binding motif in B12H122-·CH3CN is largely retained for the whole halogenated series B12X122-·CH3CN (X = F-I). This study provides a molecular-level understanding of structural evolution for acetonitrile-solvated dodecaborate clusters and a fresh view by examining acetonitrile as a real hydrogen bond (HB) donor to form strong HB interactions.

8.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38651809

RESUMO

Chiral quantum dots (QDs) are promising materials applied in many areas, such as chiral molecular recognition and spin selective filter for charge transport, and can be prepared by facile ligand exchange approaches. However, ligand exchange leads to an increase in surface defects and reduces the efficiencies of radiative recombination and charge transport, which restricts further applications. Here, we investigate the light-induced photoluminescence (PL) enhancement in chiral L- and D-cysteine CdSe QD thin films, providing a strategy to increase the PL. The PL intensity of chiral CdSe QD films can be significantly enhanced over 100 times by continuous UV laser irradiation, indicating a strong passivation of surface defects upon laser irradiation. From the comparative measurements of the PL intensity evolutions in vacuum, dry oxygen, air, and humid nitrogen atmospheres, we conclude that the mechanism of PL enhancement is photo-induced surface passivation with the assistance of water molecules.

9.
Angew Chem Int Ed Engl ; 63(39): e202407929, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38837292

RESUMO

Mechanically interlocked molecules (MIMs) are promising platforms for developing functionalized artificial molecular machines. The construction of chiral MIMs with appealing circularly polarized luminescence (CPL) properties has boosted their potential application in biomedicine and the optical industry. However, there is currently little knowledge about the CPL emission mechanism or the emission dynamics of these related MIMs. Herein, we demonstrate that time-resolved circularly polarized luminescence (TRCPL) spectroscopy combined with transient absorption (TA) spectroscopy offers a feasible approach to elucidate the origins of CPL emission in pyrene-functionalized topologically chiral [2]catenane as well as in a series of pyrene-functionalized chiral molecules. For the first time, direct evidence differentiating the chiroptical signals originating from either topological (local state emission) or Euclidean chirality (excimer state emission) in these pyrene-functionalized chiral molecules has been discovered. Our work not only establishes a novel and ideal approach to study CPL mechanism, but also provides a theoretical foundation for the rational design of novel chiral materials in the future.

10.
Opt Express ; 31(26): 43989-44003, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178481

RESUMO

Hyperspectrally compressed ultrafast photography (HCUP) based on compressed sensing and time- and spectrum-to-space mappings can simultaneously realize the temporal and spectral imaging of non-repeatable or difficult-to-repeat transient events with a passive manner in single exposure. HCUP possesses an incredibly high frame rate of tens of trillions of frames per second and a sequence depth of several hundred, and therefore plays a revolutionary role in single-shot ultrafast optical imaging. However, due to ultra-high data compression ratios induced by the extremely large sequence depth, as well as limited fidelities of traditional algorithms over the image reconstruction process, HCUP suffers from a poor image reconstruction quality and fails to capture fine structures in complex transient scenes. To overcome these restrictions, we report a flexible image reconstruction algorithm based on a total variation (TV) and cascaded denoisers (CD) for HCUP, named the TV-CD algorithm. The TV-CD algorithm applies the TV denoising model cascaded with several advanced deep learning-based denoising models in the iterative plug-and-play alternating direction method of multipliers framework, which not only preserves the image smoothness with TV, but also obtains more priori with CD. Therefore, it solves the common sparsity representation problem in local similarity and motion compensation. Both the simulation and experimental results show that the proposed TV-CD algorithm can effectively improve the image reconstruction accuracy and quality of HCUP, and may further promote the practical applications of HCUP in capturing high-dimensional complex physical, chemical and biological ultrafast dynamic scenes.

11.
Phys Chem Chem Phys ; 25(3): 2248-2255, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36594819

RESUMO

The valence state conversion of lanthanide ions induced by femtosecond laser fields has attracted considerable attention due to their potential applications in areas like high-density optical storage. However, the physical mechanisms involved in valence state conversions still remain unclear. Here, we report the first experimental study of controlling the reduction of trivalent samarium ions to divalent ones in sodium aluminoborate glass by varying the polarization status of the 800 nm femtosecond laser field. As the laser field is varied from linear to circular polarization, the reduction efficiency can be greatly decreased by about fifty percent. This polarization-dependent reduction behavior is found to directly correlate with the nonresonant two-photon 4f-4f absorption probability of the trivalent samarium ions in both experiment and theory. Multiphoton excited charge transfer between oxygen and samarium is considered to be responsible for the photoreduction. Our work demonstrates a controllable and effective way in tuning the valence state conversion efficiency and sheds light on the underlying mechanisms.

12.
Phys Chem Chem Phys ; 25(22): 15153-15161, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37221896

RESUMO

N 6-Hydroxymethyladenosine (hm6A) and N6-formyladenosine (f6A) are two important intermediates during the demethylation process of N6-methyladenosine (m6A), which has been proven to show epigenetic function in mRNA. However, there is no knowledge about how the chemical integrity and stability could be altered when these two nucleosides are exposed to ultraviolet (UV) radiation. Herein, we report the first study on excited state dynamics of hm6A and f6A in solutions by using femtosecond time-resolved spectroscopy and quantum chemistry calculations. Surprisingly, triplet excited species are clearly identified in both hm6A and f6A after UV excitation, which is in sharp contrast to the 10-3 level triplet yield of adenosine scaffolds. Moreover, the doorway states leading to triplet states are found to be an intramolecular charge transfer state and a lower-lying dark nπ* state in hm6A and f6A, respectively. These discoveries pave the way to further study their effects on RNA strands and provide insight for understanding RNA photochemistry.


Assuntos
Nucleosídeos , RNA , RNA/química , RNA Mensageiro , Análise Espectral , Epigênese Genética
13.
Phys Chem Chem Phys ; 25(37): 25810-25817, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37724455

RESUMO

A multitude of applications related to perhydroxylated closo-dodecaborate B12(OH)122- in the condensed phase are inseparable from the fundamental mechanisms underlying the high water orientation selectivity based on the base B12(OH)122-. Herein, we directly compare the structural evolution of water clusters, ranging from monomer to hexamer, oriented by functional groups in the bases B12H122-, B12H11OH2- and B12(OH)122- using multiple theoretical methods. A significant revelation is made regarding B12(OH)122-: each additional water molecule is locked into the intramolecular hydrogen bond B-O-H ternary ring in an embedded form. This new pattern of water cluster growth suggests that B-(H-O)⋯H-O interactions prevail over the competition from water-hydrogen bonds (O⋯H-O), distinguishing it from the behavior observed in B12H122- and B12H11OH2- bases, in which competition arises from a mixed competing model involving dihydrogen bonds (B-H⋯H-O), conventional hydrogen bonds (B-(H-O)⋯H-O) and water hydrogen bonds (O⋯H-O). Through aqueous solvation and ab initio molecular dynamics analysis, we further demonstrate the largest water clusters in the first hydrated shell with exceptional thermodynamic stability around B12(OH)122-. These findings provide a solid scientific foundation for the design of boron cluster chemistry incorporating hydroxyl-group-modified borate salts with potential implications for various applications.

14.
J Am Chem Soc ; 144(42): 19317-19325, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36166618

RESUMO

Photochemical behaviors of pyruvic acid in multiple phases have been extensively studied, while those of its conjugate base, the pyruvate anion (CH3COCOO-, PA-) are less understood and remain contradictory in gaseous versus aqueous phases. Here in this article, we report a joint experimental and theoretical study combining cryogenic, wavelength-resolved negative ion photoelectron spectroscopy (NIPES) and high-level quantum chemical computations to investigate PA- actinic photochemistry and its dependence on microsolvation in the gas phase. PA-·nH2O (n = 0-5) clusters were generated and characterized, with their low-lying isomers identified. NIPES conducted at multiple wavelengths across the PA- actinic regime revealed the PA- photochemistry extremely sensitive to its hydration extent. While bare PA- anions exhibit active photoinduced dissociations that generate the acetyl (CH3CO-), methide (CH3-) anions, their corresponding radicals, and slow electrons, one single attached water molecule results in significant suppression with a subsequent second water being able to completely block all dissociation pathways, effectively annihilating all PA- photochemical reactivities. The underlying dissociation mechanisms of PA-·nH2O (n = 0-2) clusters are proposed involving nπ* excitation, dehydration, decarboxylation, and further CO loss. Since the photoexcited dihydrate does not have sufficient energy to overcome the full dehydration barrier before PA- could fragmentate, the PA- dissociation pathway is completely blocked, with the energy most likely released via loss of one water and internal electronic and vibrational relaxations. The insight unraveled in this work provides a much-needed critical link to connect the seemingly conflicting PA- actinic chemistry between the gas and condensed phases.


Assuntos
Ácido Pirúvico , Água , Humanos , Água/química , Estrutura Molecular , Desidratação , Ânions/química , Gases/química , Íons
15.
J Am Chem Soc ; 144(5): 2114-2119, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080381

RESUMO

Ischemia-reperfusion (I/R) injuries are from the secondary radicals of ONOO-. Direct radical scavenging is difficult because of their high reactivity. ONOO- is longer-lived than the radicals in the biological milieu. Scavenging ONOO- suppresses radical generation preventively. CO is neuroprotective during ischemia. With the scaffold of carbon-caged xanthene, we designed an OONO--triggered CO donor (PCOD585). Notably, PCOD585 exhibited a concomitant fluorescence turn-on upon ONOO-detection, facilitating microscopic monitoring. PCOD585 was cytoprotective in oxygen-glucose deprivation (OGD)-insulted PC-12 cells. It was permeable to the blood-brain barrier and further exhibited neuroprotective effects to MCAO rats by reducing infarction volume, cell apoptosis, and brain edema.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Monóxido de Carbono/química , AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Ácido Peroxinitroso/química , Animais , Linhagem Celular , Corantes Fluorescentes , Humanos , Fármacos Neuroprotetores/química , Ratos
16.
Opt Express ; 30(9): 14287-14299, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473175

RESUMO

Structured illumination microscopy (SIM) has been widely applied to investigating fine structures of biological samples by breaking the optical diffraction limitation. So far, video-rate imaging has been obtained in SIM, but the imaging speed was still limited due to the reconstruction of a super-solution image through multi-sampling, which hindered the applications in high-speed biomedical imaging. To overcome this limitation, here we develop compressive imaging-based structured illumination microscopy (CISIM) by synergizing SIM and compressive sensing (CS). Compared with conventional SIM, CISIM can greatly improve the super-resolution imaging speed by extracting multiple super-resolution images from one compressed image. Based on CISIM, we successfully reconstruct the super-resolution images in biological dynamics, and analyze the effect factors of image reconstruction quality, which verify the feasibility of CISIM. CISIM paves a way for high-speed super-resolution imaging, which may bring technological breakthroughs and significant applications in biomedical imaging.


Assuntos
Iluminação , Microscopia de Fluorescência/métodos , Fenômenos Físicos
17.
Opt Express ; 30(17): 31157-31170, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242204

RESUMO

Being capable of passively capturing transient scenes occurring in picoseconds and even shorter time with an extremely large sequence depth in a snapshot, compressed ultrafast photography (CUP) has aroused tremendous attention in ultrafast optical imaging. However, the high compression ratio induced by large sequence depth brings the problem of low image quality in image reconstruction, preventing CUP from observing transient scenes with fine spatial information. To overcome these restrictions, we propose an efficient image reconstruction algorithm with multi-scale (MS) weighted denoising based on the plug-and-play (PnP) based alternating direction method of multipliers (ADMM) framework for multi-channel coupled CUP (MC-CUP), named the MCMS-PnP algorithm. By removing non-Gaussian distributed noise using weighted MS denoising during each iteration of the ADMM, and adaptively adjusting the weights via sufficiently exploiting the coupling information among different acquisition channels collected by MC-CUP, a synergistic combination of hardware and algorithm can be realized to significantly improve the quality of image reconstruction. Both simulation and experimental results demonstrate that the proposed adaptive MCMS-PnP algorithm can effectively improve the accuracy and quality of reconstructed images in MC-CUP, and extend the detectable range of CUP to transient scenes with fine structures.

18.
Molecules ; 27(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500248

RESUMO

Proflavine is an acridine derivative which was discovered as one of the earliest antibacterial agents, and it has been proven to have potential application to fields such as chemotherapy, photobiology and solar-energy conversion. In particular, it is well known that proflavine can bind to DNA with different modes, and this may open addition photochemical-reaction channels in DNA. Herein, the excited-state dynamics of proflavine after intercalation into DNA duplex is studied using femtosecond time-resolved spectroscopy, and compared with that in solution. It is demonstrated that both fluorescence and the triplet excited-state generation of proflavine were quenched after intercalation into DNA, due to ultrafast non-radiative channels. A static-quenching mechanism was identified for the proflavine-DNA complex, in line with the spectroscopy data, and the excited-state deactivation mechanism was proposed.


Assuntos
Substâncias Intercalantes , Proflavina , Proflavina/química , DNA/química , Acridinas
19.
Angew Chem Int Ed Engl ; 61(4): e202113190, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34791747

RESUMO

An intersystem crossing (ISC) rate constant of 1.0×1011  s-1 was previously registered with a spiro-bis-benzophenone scaffold. Triplet generation efficiency could be further enhanced by stabilizing the spiro-charge-transfer (CT) state and rationally designing spiro-compounds (SCTs) that consist of electron-rich diphenyl ether as the spiro-CT donor and electron-deficient dinaphthyl ketone as the spiro-CT acceptor. Through fine-tuning of the energy level between the CT and high energy triplet states, near-unity triplet generation quantum yield was achieved and the underlying ISC mechanism is revealed by using ultrafast spectroscopy and quantum chemical calculations. Potential triplet sensitizing application was demonstrated in SCTs. Our findings suggest that a spiro-bichromophoric molecular system with an enhanced spiro-charge transfer warrants efficient triplet generation and is a powerful strategy of heavy-atom-free triplet sensitizers with predictable ISC properties.

20.
Phys Chem Chem Phys ; 23(24): 13447-13457, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34008657

RESUMO

A fundamental understanding of cyclodextrin-closo-dodecaborate inclusion complexes is of great interest in supramolecular chemistry. Herein, we report a systematic investigation on the electronic structures and intramolecular interactions of perhalogenated closo-dodecaborate dianions B12X122- (X = F, Cl, Br and I) binding to α-, ß-, and γ-cyclodextrins (CDs) in the gas phase using combined negative ion photoelectron spectroscopy (NIPES) and density functional theory (DFT) calculations. The vertical detachment energy (VDE) of each complex and electronic stabilization of each dianion due to the CD binding (ΔVDE, relative to the corresponding isolated B12X122-) are determined from the experiments along α-, ß- and γ-CD in the form of VDE (ΔVDE): 4.00 (2.10), 4.33 (2.43), and 4.30 (2.40) eV in X = F; 4.09 (1.14), 4.64 (1.69), and 4.69 (1.74) eV in X = Cl; 4.11 (0.91), 4.58 (1.38), and 4.70 (1.50) eV in X = Br; and 3.54 (0.74), 3.88 (1.08), and 4.05 (1.25) eV in X = I, respectively. All complexes have significantly higher VDEs than the corresponding isolated dodecaborate dianions with ΔVDE spanning from 0.74 eV at (α, I) to 2.43 eV at (ß, F), sensitive to both host CD size and guest substituent X. DFT-optimized complex structures indicate that all B12X122- prefer binding to the wide openings of CDs with the insertion depth and binding motif strongly dependent on the CD size and halogen X. Dodecaborate anions with heavy halogens, i.e., X = Cl, Br, and I, are found outside of α-CD, while B12F122- is completely wrapped by γ-CD. Partial embedment of B12X122- into CDs is observed for the other complexes via multipronged B-XH-O/C interlocking patterns. The simulated spectra based on the density of states agree well with those of the experiments and the calculated VDEs well reproduce the experimental trends. Molecular orbital analyses suggest that the spectral features at low binding energies originated from electrons detached from the dodecaborate dianion, while those at higher binding energies are derived from electron detachment from CDs. Energy decomposition analyses reveal that the electrostatic interaction plays a dominating role in contributing to the host-guest interactions for the X = F series partially due to the formation of a O/C-HX-B hydrogen bonding network, and the dispersion forces gradually become important with the increase of halogen size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA