Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 426, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498081

RESUMO

BACKGROUND: Drought stress is considered as one of the major production constraints in rice. RPHR-1005R is a restorer line (R-Line) with a popular, medium-slender grain type, and is the male parent of the popular Indian rice hybrid, DRR-H3. However, both the hybrid and its restorer are highly vulnerable to the drought stress, which limits the adoption of the hybrid. Therefore, the selection of the restorer line RPHR-1005R has been made with the objective of enhancing drought tolerance. METHODS AND RESULTS: In this study, we have introgressed a major QTL for grain yield under drought (qDTY 1.1) from Nagina22 through a marker-assisted backcross breeding (MABB) strategy. PCR based SSR markers linked to grain yield under drought (qDTY1.1 - RM431, RM11943), fertility restorer genes (Rf3-DRRM-Rf3-10, Rf4-RM6100) and wide compatibility (S5n allele) were deployed for foreground selection. At BC2F1, a single plant (RPHR6339-4-16-14) with target QTL in heterozygous condition and with the highest recurrent parent genome recovery (85.41%) and phenotypically like RPHR-1005R was identified and selfed to generate BC2F2. Fifty-eight homozygous lines were advanced to BC2F4 and six promising restorer lines and a hybrid combination (APMS6A/RPHR6339-4-16-14-3) were identified. CONCLUSIONS: In summary, the six improved restorer lines could be employed for developing heterotic hybrids possessing reproductive stage drought tolerance. The hybrid combination (APMS6A/RPHR6339-4-16-14-3) was estimated to ensure stable yields in drought-prone irrigated lowlands as well as in directly seeded aerobic and upland areas of India.


Assuntos
Resistência à Seca , Oryza , Oryza/genética , Melhoramento Genético , Melhoramento Vegetal , Reprodução , Grão Comestível/genética
2.
BMC Biol ; 21(1): 15, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36721195

RESUMO

BACKGROUND: Rhizoctonia solani is a polyphagous fungal pathogen that causes diseases in crops. The fungal strains are classified into anastomosis groups (AGs); however, genomic complexity, diversification into the AGs and the evolution of pathogenicity-associated genes remain poorly understood. RESULTS: We report a recent whole-genome duplication and sequential segmental duplications in AG1-IA strains of R. solani. Transposable element (TE) clusters have caused loss of synteny in the duplicated blocks and introduced differential structural alterations in the functional domains of several pathogenicity-associated paralogous gene pairs. We demonstrate that the TE-mediated structural variations in a glycosyl hydrolase domain and a GMC oxidoreductase domain in two paralogous pairs affect the pathogenicity of R. solani. Furthermore, to investigate the association of TEs with the natural selection and evolution of pathogenicity, we sequenced the genomes of forty-two rice field isolates of R. solani AG1-IA. The genomic regions with high population mutation rates and with the lowest nucleotide diversity are enriched with TEs. Genetic diversity analysis predicted the genes that are most likely under diversifying and purifying selections. We present evidence that a smaller variant of a glucosamine phosphate N-acetyltransferase (GNAT) protein, predicted to be under purifying selection, and an LPMP_AA9 domain-containing protein, predicted to be under diversifying selection, are important for the successful pathogenesis of R. solani in rice as well as tomato. CONCLUSIONS: Our study has unravelled whole-genome duplication, TE-mediated neofunctionalization of genes and evolution of pathogenicity traits in R. solani AG1-IA. The pathogenicity-associated genes identified during the study can serve as novel targets for disease control.


Assuntos
Duplicação Gênica , Oryza , Virulência/genética , Rhizoctonia/genética , Genômica , Elementos de DNA Transponíveis
3.
Physiol Mol Biol Plants ; 30(7): 1145-1160, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39100880

RESUMO

Grain weight (GW) is the most important stable trait that directly contributes to crop yield in case of cereals. A total of 105 backcross introgression lines (BC2F10 BILs) derived from Swarna/O. nivara IRGC81848 (NPS) and 90 BILs from Swarna/O. nivara IRGC81832 (NPK) were evaluated for thousand-grain weight (TGW) across four years (wet seasons 2014, 2015, 2016 and 2018) and chromosome segment substitution lines (CSSLs) were selected. From significant pair- wise mean comparison with Swarna, a total of 77 positively and 29 negatively significant NPS lines and 62 positively and 29 negatively significant NPK lines were identified. In all 4 years, 14 NPS lines and 9 NPK lines were positively significant and one-line NPS69 (IET22161) was negatively significant for TGW over Swarna consistently. NPS lines and NPK lines were genotyped using 111 and 140 polymorphic SSRs respectively. Quantitative trait locus (QTL) mapping using ICIM v4.2 software showed 13 QTLs for TGW in NPS. Three major effect QTLs qTGW2.1, qTGW8.1 and qTGW11.1 were identified in NPS for two or more years with PVE ranging from 8 to 14%. Likewise, 10 QTLs were identified in NPK and including two major effect QTL qTGW3.1 and qTGW12.1 with 6 to 32% PVE. In all QTLs, O. nivara alleles increased TGW. These consistent QTLs are very suitable for fine mapping and functional analysis of grain weight. Further in this study, CSSLs NPS1 (10-2S) and NPK61 (158 K) with significantly higher grain weight than the recurrent parent, Swarna cv. Oryza sativa were selected from each population and secondary F2 mapping populations were developed. Using Bulked Segregant QTL sequencing, a grain weight QTL, designated as qTGW3.1 was fine mapped from the cross between NPK61 and Swarna. This QTL explained 48% (logarithm of odds = 32.2) of the phenotypic variations and was fine mapped to a 31 kb interval using recombinant analysis. GRAS transcription factor gene (OS03go103400) involved in plant growth and development located at this genomic locus might be the candidate gene for qTGW3.1. The results of this study will help in further functional studies and improving the knowledge related to the molecular mechanism of grain weight in Oryza and lays a solid foundation for the breeding for high yield. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01483-0.

4.
Physiol Mol Biol Plants ; 30(4): 665-686, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38737321

RESUMO

Lodging, a phenomenon characterized by the bending or breaking of rice plants, poses substantial constraints on productivity, particularly during the harvesting phase in regions susceptible to strong winds. The rice strong culm trait is influenced by the intricate interplay of genetic, physiological, epigenetic, and environmental factors. Stem architecture, encompassing morphological and anatomical attributes, alongside the composition of both structural and non-structural carbohydrates, emerges as a critical determinant of lodging resistance. The adaptive response of the rice culm to various biotic and abiotic environmental factors further modulates the propensity for lodging. Advancements in next-generation sequencing technologies have expedited the genetic dissection of lodging resistance, enabling the identification of pertinent genes, quantitative trait loci, and novel alleles. Concurrently, contemporary breeding strategies, ranging from biparental approaches to more sophisticated methods such as multi-parent-based breeding, gene pyramiding, genomic selection, genome-wide association studies, and haplotype-based breeding, offer perspectives on the genetic underpinnings of culm strength. This review comprehensively delves into physiological attributes, culm histology, epigenetic determinants, and gene expression profiles associated with lodging resistance, with a specialized focus on leveraging next-generation sequencing for candidate gene discovery.

5.
Mol Breed ; 43(9): 69, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37622088

RESUMO

Complete panicle exsertion (CPE) in rice is an important determinant of yield and a desirable trait in breeding. However, the genetic basis of CPE in rice still remains to be completely characterized. An ethyl methane sulfonate (EMS) mutant line of an elite cultivar Samba Mahsuri (BPT 5204), displaying stable and consistent CPE, was identified and named as CPE-110. MutMap and RNA-seq were deployed for unraveling the genomic regions, genes, and markers associated with CPE. Two major genomic intervals, on chromosome 8 (25668481-25750456) and on chromosome 11 (20147154-20190400), were identified to be linked to CPE through MutMap. A non-synonymous SNP (G/A; Chr8:25683828) in the gene LOC_Os08g40570 encoding pyridoxamine 5'-phosphate oxidase with the SNP index 1 was converted to Kompetitive allele-specific PCR (KASP) marker. This SNP (KASP 8-1) exhibited significant association with CPE and further validated through assay in the F2 mapping population, released varieties and CPE exhibiting BPT 5204 mutant lines. RNA-seq of the flag leaves at the booting stage, 1100 genes were upregulated and 1305 downregulated differentially in CPE-110 and BPT 5204. Metabolic pathway analysis indicated an enrichment of genes involved in photosynthesis, glyoxylate, dicarboxylate, porphyrin, pyruvate, chlorophyll, carotenoid, and carbon metabolism. Further molecular and functional studies of the candidate genes could reveal the mechanistic aspects of CPE. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01412-1.

6.
World J Microbiol Biotechnol ; 40(1): 2, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37923802

RESUMO

The stem rot caused by Sclerotium hydrophilum and false smut caused by Ustilaginoidea virens are two of the major production constraints in rice cultivation in India and other countries. Stem rot and false smut can be effectively controlled with synthetic fungicides. However, the indiscriminate use of chemical fungicides may cause development of resistance among the pathogens. In addition to this, synthetic fungicides also exhibit harmful impacts on the environment. Exploiting microbe-based alternatives for managing plant diseases diminishes public concerns about the ill effects of pesticide usage in crops. In this regard, the present study was designed to investigate the potential of native microbial biocontrol agents (BCAs) from rice rhizosphere for the sustainable management of stem rot and false smut diseases in rice. Potential BCAs and pathogens were identified and characterized through morphological, biochemical, and sanger sequencing techniques. Bio-efficacy tests of potential BCAs against stem rot and false smut diseases on rice under glasshouse conditions indicated higher seed vigour index of the treated seeds, significant improvement in the growth of the seedling, increased dry weight, reduction in percentage disease index viz., 70.03% (stem rot) and 69.24% (false smut) over the control plants. Phytohormones indole acetic acid (IAA), abscisic acid (ABA), gibberellic acid (GA), salicylic acid (SA), and zeatin (tZ) were detected and quantified in the four potential BCAs using liquid chromatography- tandem mass spectrometry (LC-MS/MS). Scanning electron microscopy (SEM) studies revealed the endophytic nature of the strains in rice. The study indicated a positive correlation between the diversity and concentration of phytohormones released by the bioagents and enhanced plant growth promotion and disease suppression in rice.


Assuntos
Fungicidas Industriais , Oryza , Reguladores de Crescimento de Plantas , Cromatografia Líquida , Fungicidas Industriais/farmacologia , Espectrometria de Massas em Tandem , Doenças das Plantas/prevenção & controle
7.
Physiol Mol Biol Plants ; 29(2): 253-262, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36819122

RESUMO

Hybrid rice technology offers great promise to further enhance rice production and productivity for global food security. Improving hybrid rice parental lines is the first step in developing heterotic rice hybrids. To improve resistance against blast disease, a maintainer line DRR 9B was fortified with a major broad-spectrum blast resistance gene Pi2 through marker-assisted selection. The rice blast caused by Magnaporthe oryzae is a major disease and can cause severe yield losses upto 100%. The NILs of Samba Mahsuri namely BA-23-11-89-12-168 possessing Pi2 was utilized as a donor parent. The PCR-based molecular marker tightly linked to Pi2 gene was used for the foreground selection at BC1F1 generation. The molecular marker tightly linked to the major fertility restorer gene Rf4 was used for negative selection (i.e., selection of plants possessing non fertility restoring alleles) at BC1F1 generation to identify maintainer lines. The positive plants with Rf4 gene were added to the restorer pool for restorer line development. At each stage, MAS for Pi2 coupled with stringent phenotypic selection for agro-morphological and grain quality traits were exercised. At BC1F3 generation, one hundred families were screened against blast disease at uniform blast nursery (UBN) and selected resistant lines were advanced to next generations. In the BC1F5 generation plants were subjected to agro-morphological evaluation for yield and yield-contributing traits. The selected plants at BC1F5 generation were crossed with DRR 9A to assess the maintainer ability of blast resistance lines and for further CMS line conversion for hybrid rice breeding for developing blast resistance rice hybrids.

8.
Cereal Res Commun ; 50(4): 573-601, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34642509

RESUMO

Abstract: Rice-wheat cropping system, intensively followed in Indo-Gangetic plains (IGP), played a prominent role in fulfilling the food grains demand of the increasing population of South Asia. In northern Indian plains, some practices such as intensive rice cultivation with traditional method for long-term have been associated with severe deterioration of natural resources, declining factor productivity, multiple nutrients deficiencies, depleting groundwater, labour scarcity and higher cost of cultivation, putting the agricultural sustainability in question. Varietal development, soil and water management, and adoption of resource conservation technologies in rice cultivation are the key interventions areas to address these challenges. The cultivation of lesser water requiring crops, replacing rice in light-textured soil and rainfed condition, should be encouraged through policy interventions. Direct seeding of short duration, high-yielding and stress tolerant rice varieties with water conservation technologies can be a successful approach to improve the input use efficiency in rice cultivation under medium-heavy-textured soils. Moreover, integrated approach of suitable cultivars for conservation agriculture, mechanized transplanting on zero-tilled/unpuddled field and need-based application of water, fertilizer and chemicals might be a successful approach for sustainable rice production system in the current scenario. In this review study, various challenges in productivity and sustainability of rice cultivation system and possible alternatives and solutions to overcome such challenges are discussed in details.

9.
Plant Mol Biol ; 100(1-2): 59-71, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30796712

RESUMO

KEY MESSAGE: RNAi mediated silencing of pectin degrading enzyme of R. solani gives a high level of resistance against sheath blight disease of rice. Rice sheath blight disease caused by Rhizoctonia solani Kuhn (telemorph; Thanatephorus cucumeris) is one of the most devastating fungal diseases which cause severe loss to rice grain production. In the absence of resistant cultivars, the disease is currently managed through fungicides which add to environmental pollution. To explore the potential of utilizing RNA interference (RNAi)-mediated resistance against sheath blight disease, we identified genes encoding proteins and enzymes involved in the RNAi pathway in this fungal pathogen. The RNAi target genes were deciphered by RNAseq analysis of a highly virulent strain of the R. solani grown in pectin medium. Additionally, pectin metabolism associated genes of R. solani were analyzed through transcriptome sequencing of infected rice tissues obtained from six diverse rice cultivars. One of the key candidate gene AG1IA_04727 encoding polygalacturonase (PG), which was observed to be significantly upregulated during infection, was targeted through RNAi to develop disease resistance. Stable expression of PG-RNAi construct in rice showed efficient silencing of AG1IA_04727 and suppression of sheath blight disease. This study highlights important information about the existence of RNAi machinery and key genes of R. solani which can be targeted through RNAi to develop pathogen-derived resistance, thus opening an alternative strategy for developing sheath blight-resistant rice cultivars.


Assuntos
Resistência à Doença/genética , Oryza/genética , Oryza/microbiologia , Pectinas/farmacologia , Doenças das Plantas/microbiologia , Interferência de RNA , Rhizoctonia/genética , Transcriptoma/genética , Progressão da Doença , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Doenças das Plantas/genética , Poligalacturonase/genética , Poligalacturonase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rhizoctonia/efeitos dos fármacos , Análise de Sequência de RNA , Transformação Genética
10.
Theor Appl Genet ; 127(1): 113-24, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24145853

RESUMO

KEY MESSAGE: We report here tagging and fine-mapping of gm3 gene, development of a functional marker for it and its use in marker-assisted selection. The recessive rice gall midge resistance gene, gm3 identified in the rice breeding line RP2068-18-3-5 confers resistance against five of the seven Indian biotypes of the Asian rice gall midge Orseolia oryzae. We report here tagging and fine-mapping of gm3 gene, development of a functional marker for it and demonstrated its use in marker-assisted selection (MAS). A mapping population consisting of 302 F10 recombinant inbred lines derived from the cross TN1 (susceptible)/RP2068-18-3-5, was screened against gall midge biotype 4 (GMB4) and analyzed with a set of 89 polymorphic SSR markers distributed uniformly across the rice genome. Two SSR markers, RM17480 and gm3SSR4, located on chromosome 4L displayed high degree of co-segregation with the trait phenotype and flanked the gene. In silico analysis of the genomic region spanning these two markers contained 62 putatively expressed genes, including a gene encoding an NB-ARC (NBS-LRR) domain containing protein. A fragment of this gene was amplified with the designed marker, NBcloning 0.9 Kb from the two susceptible TN1, Improved Samba Mahsuri (B95-1) and two resistant cultivars, RP 2068-18-3-5 and Phalguna (with Gm2 gene). The amplicons were observed to be polymorphic between the susceptible and resistant genotypes and hence were cloned and sequenced. A new primer, gm3del3, which was designed based on sequence polymorphism, amplified fragments with distinct size polymorphism among RP2068-18-3-5, Phalguna and TN1 and B95-1 and displayed no recombination in the entire mapping population. Expression of the candidate NB-ARC gene in the susceptible TN1 and the resistant RP2068-18-3-5 plants following infestation with GMB4 was analyzed, through real-time reverse transcription PCR. Results showed twofold enhanced expression in RP2068-18-3-5 plants, but not in TN1 plants, 120 h after infestation. Amino acid sequence and structure analysis of the proteins coded by different alleles of gm3 gene showed deletion of eight amino acids due to an early stop codon in RP2068-18-3-5 resulting in a change in the functional domain of the protein. The gm3del3 was used as a functional marker for introgression of gm3 gene into the genetic background of the elite bacterial blight resistant cultivar Improved Samba Mahsuri (B95-1) through MAS.


Assuntos
Oryza/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Dípteros , Estudos de Associação Genética , Dados de Sequência Molecular , Oryza/fisiologia , Controle Biológico de Vetores , Proteínas de Plantas/fisiologia , Alinhamento de Sequência
11.
Transgenic Res ; 23(3): 421-39, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24398893

RESUMO

The cultivation of rice (Oryza sativa L.), a major food crop, requires ample water (30 % of the fresh water available worldwide), and its productivity is greatly affected by drought, the most significant environmental factor. Much research has focussed on identifying quantitative trait loci, stress-regulated genes and transcription factors that will contribute towards the development of climate-resilient/tolerant crop plants in general and rice in particular. The transcription factor DREB1A, identified from the model plant Arabidopsis thaliana, has been reported to enhance stress tolerance against drought stress. We developed transgenic rice plants with AtDREB1A in the background of indica rice cultivar Samba Mahsuri through Agrobacterium-mediated transformation. The AtDREB1A gene was stably inherited and expressed in T1 and T2 plants and in subsequent generations, as indicated by the results of PCR, Southern blot and RT-PCR analyses. Expression of AtDREB1A was induced by drought stress in transgenic rice lines, which were highly tolerant to severe water deficit stress in both the vegetative and reproductive stages without affecting their morphological or agronomic traits. The physiological studies revealed that the expression of AtDREB1A was associated with an increased accumulation of the osmotic substance proline, maintenance of chlorophyll, increased relative water content and decreased ion leakage under drought stress. Most of the homozygous lines were highly tolerant to drought stress and showed significantly a higher grain yield and spikelet fertility relative to the nontransgenic control plants under both stressed and unstressed conditions. The improvement in drought stress tolerance in combination with agronomic traits is very essential in high premium indica rice cultivars, such as Samba Mahsuri, so that farmers can benefit in times of seasonal droughts and water scarcity.


Assuntos
Proteínas de Arabidopsis/biossíntese , Secas , Oryza/genética , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/biossíntese , Adaptação Fisiológica , Agrobacterium , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Oryza/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Fatores de Transcrição/genética , Transformação Genética
12.
Sci Rep ; 14(1): 6743, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509120

RESUMO

In rice, grain filling is a crucial stage where asynchronous filling of the pollinated spikelet's of the panicle occurs. It can influence both grain quality and yield. In rice grain, starch is the dominant component and contains amylose and amylopectin. Amylose content is the chief cooking quality parameter, however, rice varieties having similar amylose content varied in other parameters. Hence, in this study, a set of varieties varying in yield (04) and another set (12) of varieties that are similar in amylose content with variation in gel consistency and alkali spreading value were used. Panicles were collected at various intervals and analysed for individual grain weight and quantities of amylose and amylopectin. Gas exchange parameters were measured in varieties varying in yield. Upper branches of the panicles were collected from rice varieties having similar amylose content and were subjected to gene expression analysis with fourteen gene specific primers of starch synthesis. Results indicate that grain filling was initiated simultaneously in multiple branches. Amylose and amylopectin quantities increased with the increase in individual grain weight. However, the pattern of regression lines of amylose and amylopectin percentages with increase in individual grain weight varied among the varieties. Gas exchange parameters like photosynthetic rate, stomatal conductance, intercellular CO2 and transpiration rate decreased with the increase in grain filling period in both good and poor yielding varieties. However, they decreased more in poor yielders. Expression of fourteen genes varied among the varieties and absence of SBE2b can be responsible for medium or soft gel consistency.


Assuntos
Amilose , Oryza , Amilose/metabolismo , Amilopectina/metabolismo , Amido/metabolismo , Grão Comestível/metabolismo , Oryza/genética , Oryza/metabolismo , Expressão Gênica
13.
Plant Physiol Biochem ; 206: 108165, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38064899

RESUMO

Plants perceive environmental fluctuations as stress and confront several stresses throughout their life cycle individually or in combination. Plants have evolved their sensing and signaling mechanisms to perceive and respond to a variety of stresses. Epigenetic regulation plays a critical role in the regulation of genes, spatiotemporal expression of genes under stress conditions and imparts a stress memory to encounter future stress responses. It is quintessential to integrate our understanding of genetics and epigenetics to maintain plant fitness, achieve desired genetic gains with no trade-offs, and durable long-term stress tolerance. The long non-coding RNA >200 nts having no coding potential (or very low) play several roles in epigenetic memory, contributing to the regulation of gene expression and the maintenance of cellular identity which include chromatin remodeling, imprinting (dosage compensation), stable silencing, facilitating nuclear organization, regulation of enhancer-promoter interactions, response to environmental signals and epigenetic switching. The lncRNAs are involved in a myriad of stress responses by activation or repression of target genes and hence are potential candidates for deploying in climate-resilient breeding programs. This review puts forward the significant roles of long non-coding RNA as an epigenetic response during abiotic stresses in plants and the prospects of deploying lncRNAs for designing climate-resilient plants.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , Epigênese Genética , Melhoramento Vegetal , Plantas/genética , Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
14.
3 Biotech ; 13(12): 393, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37953830

RESUMO

Gangavati sona (GS) is a high-yielding, fine-grain rice variety widely grown in the Tungabhadra command area in Karnataka, India; however, it is susceptible to bacterial blight (BB). Therefore, the present study was conducted to improve the GS variety for BB resistance. Three BB-resistant genes (xa5, xa13, and Xa21) were introgressed into the genetic background of susceptible cultivar GS through marker-assisted backcrossing (MABB) by using Improved samba Mahsuri (ISM), a popular, high-yielding, bacterial blight resistant rice variety as a donor parent. Foreground selection was carried out using gene-specific markers, viz., xa5FM (xa5), xa13prom (xa13), and pTA248 (Xa21), while background selection was carried out using well-distributed 64 polymorphic microsatellite markers. The true heterozygote F1 was used as the male parent for backcrossing with GS to obtain BC1F1. The process was repeated in BC1F1 generation, and a BC2F1 plant (IGS-5-11-5) possessing all three target genes along with maximum recurrent parent genome (RPG) recovery (86.7%) was selfed to obtain BC2F2s. At BC2F2, a single triple gene homozygote plant (IGS-5-11-5-33) with 92.6% RPG recovery was identified and advanced to BC2F5 by a pedigree method. At BC2F5, the seven best entries were selected, possessing all three resistance genes with high resistance levels against bacterial blight, yield level, and grain quality features equivalent to better than GS. The improved versions of GS will immensely benefit the farmers whose fields are endemic to BB.

15.
Phytopathology ; 102(2): 222-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21970567

RESUMO

Broadening of the genetic base for identification and transfer of genes for resistance to insect pests and diseases from wild relatives of rice is an important strategy in resistance breeding programs across the world. An accession of Oryza nivara, International Rice Germplasm Collection (IRGC) accession number 105710, was identified to exhibit high level and broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. In order to study the genetics of resistance and to tag and map the resistance gene or genes present in IRGC 105710, it was crossed with the bacterial blight (BB)-susceptible varieties 'TN1' and 'Samba Mahsuri' (SM) and then backcrossed to generate backcross mapping populations. Analysis of these populations and their progeny testing revealed that a single dominant gene controls resistance in IRGC 105710. The BC(1)F(2) population derived from the cross IRGC 105710/TN1//TN1 was screened with a set of 72 polymorphic simple-sequence repeat (SSR) markers distributed across the rice genome and the resistance gene was coarse mapped on chromosome 7 between the SSR markers RM5711 and RM6728 at a genetic distance of 17.0 and 19.3 centimorgans (cM), respectively. After analysis involving 49 SSR markers located between the genomic interval spanned by RM5711 and RM6728, and BC(2)F(2) population consisting of 2,011 individuals derived from the cross IRGC 105710/TN1//TN1, the gene was fine mapped between two SSR markers (RMWR7.1 and RMWR7.6) located at a genetic distance of 0.9 and 1.2 cM, respectively, from the gene and flanking it. The linkage distances were validated in a BC(1)F(2) mapping population derived from the cross IRGC 105710/SM//2 × SM. The BB resistance gene present in the O. nivara accession was identified to be novel based on its unique map location on chromosome 7 and wider spectrum of BB resistance; this gene has been named Xa33. The genomic region between the two closely flanking SSR markers was in silico analyzed for putatively expressed candidate genes. In total, eight genes were identified in the region and a putative gene encoding serinethreonine kinase appears to be a candidate for the Xa33 gene.


Assuntos
Resistência à Doença/genética , Oryza/genética , Doenças das Plantas/imunologia , Proteínas Serina-Treonina Quinases/genética , Xanthomonas/imunologia , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Genes de Plantas/genética , Ligação Genética , Marcadores Genéticos/genética , Repetições de Microssatélites/genética , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética
16.
Data Brief ; 41: 107923, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35198695

RESUMO

Six native isolates of Trichoderma and Bacillus having potential for biocontrol and plant growth-promoting activities in rice were isolated from different rice growing regions of India. These isolates were screened for their efficiency in both in vitro and in vivo conditions for three years. The identity of the isolates was confirmed both by morphological and molecular characterization. Three Bacillus spp. viz., Bacillus velenzensis strain BIK2, Bacillus cabrialesii strain BIK3 and Bacillus paralicheniformis strain BIK4 and Trichoderma spp. viz., Trichoderma asperellum strain TAIK1, and T. asperellum strain TAIK5, native to the Telangana state, in Southern India except for strain TAIK4 (Rewa district in the state of Madhya Pradesh in Central India). These promising isolates were subjected for whole genome sequencing using the Illumina platform and data was presented. The data was emanated for Trichoderma asperellum (TAIK1), Trichoderma asperellum (TAIK4), Trichoderma asperellum (TAIK5), Bacillus velezensis (BIK2), Bacillus cabrialesii (BIK3) and Bacillus paralicheniformis (BIK4) isolates had an average 100X coverage of 109X, 150X and 116X; 1447X, 905X and 585X respectively. Further studies on the annotation of the data obtained in correlation with the lab and field performance of these microbes would enable them to be used in metagenomics studies to compare their performance under natural conditions with different microbiota and popular rice varieties. Bioformulation of these strains would be more appropriate with the availability of this genomic data.

17.
Sci Rep ; 12(1): 1203, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075121

RESUMO

The harvested plant products, specifically, the grains of cereals are major drivers of soil phosphorus (P) depletion. However, the breeding or biotechnology efforts to develop low P seeds have not been attempted because of possible adverse effects on seedling vigour and crop establishment. Several studies have contradictory observations on influence of seed P on seedling vigour. Lack of appropriate genetic material has been the major bottleneck in reaching the consensus. In this study, we used 30 EMS induced mutants of rice cultivar Nagina22 to understand the role of seed P on seedling vigour and associated physiological processes. Seedling vigour, morpho-physiological characteristics, acid phosphatases, alpha-amylase, and expression of P transporter genes were analyzed in seedlings obtained from seeds of high and low grain P mutants. The study suggests that seed P has a significant role on seedling vigour, chlorophyll content and photosynthesis process of young seedlings, and P transport from roots. Notably, we identified few mutants such as NH4791, NH4785, NH4714, NH4663, NH4614, and NH4618 which showed least influence of low seed P on seedling vigour and other metabolic processes. Therefore, these mutants can be used in breeding programs aiming for development of low P grains. Also, these and other identified mutants can be used to decipher the genetic and molecular mechanisms regulating the differential response of seed P on germination, seedling vigour and several other physiological processes influencing the crop growth and establishment.


Assuntos
Oryza/metabolismo , Fósforo/metabolismo , Plântula/crescimento & desenvolvimento , Sementes/metabolismo , Fosfatase Ácida/metabolismo , Clorofila/metabolismo , Mutagênese , Oryza/genética , Oryza/crescimento & desenvolvimento , alfa-Amilases/metabolismo
18.
Rice (N Y) ; 15(1): 45, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35976520

RESUMO

BACKGROUND: Improved Samba Mahsuri (ISM) is an elite, high-yielding, bacterial blight resistant, fine-grained rice variety with low glycaemic index. It is highly sensitive to salt stress, particularly at seedling stage, which significantly reduces its yield potential in coastal areas. A salinity tolerant QTL, Saltol, associated with seedling stage tolerance was previously mapped on chromosome 1 (10.6-11.5 Mb) from the Indian landrace, Pokkali and is effective in different genetic backgrounds. The objective of this study was to enhance salinity tolerance of ISM by incorporating the Saltol QTL through marker-assisted backcross breeding using the breeding line, FL478 (Pokkali/IR29). RESULTS: Foreground selection was carried out at each generation using five Saltol-specific markers and three bacterial blight resistance genes, Xa21, xa13 and xa5. Background selection was conducted using 66 well distributed polymorphic SSR markers and at the BC3F2 generation, a single plant with maximum recurrent parent genome recovery (95.3%) was identified and advanced to the BC3F4 generation. Based on bacterial blight resistance, seedling stage salinity tolerance and resemblance to ISM, four advanced breeding lines were selected for testing in replicated experiments near Hyderabad, India. A promising near-isogenic line, DRR Dhan 58, was evaluated in multi-location trials-coastal salinity and it showed significant salinity tolerance, resistance to bacterial blight disease, high yield and excellent grain quality during the 2019 and 2020 trials. DRR Dhan 58 was 95.1% similar to ISM based on genotyping with the 90 K SNP chip. Whole genome resequencing analysis of Pokkali and FL478 which were salinity tolerant checks, ISM and DRR Dhan 58 showed a high degree of relatedness with respect to the candidate gene loci for Saltol and OsSKC1 (Shoot K+ Concentration 1). CONCLUSION: DRR Dhan 58, possessing Saltol and three bacterial blight resistance genes (Xa21, xa13 and xa5) in the genetic background of the Indian mega-variety of rice, Samba Mahsuri, was developed for potential cultivation in areas prone to seedling stage salinity, as well as areas with endemic bacterial blight disease. This entry had a 24% yield advantage over the recurrent parent ISM under coastal saline conditions in multi-location trials and was recently released for commercial cultivation in India.

19.
Genet Res (Camb) ; 93(6): 397-408, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22189605

RESUMO

The cultivar Ajaya (IET 8585) exhibits durable broad-spectrum resistance to bacterial blight (BB) disease of rice and is widely used as a resistance donor. The present study was carried out to decipher the genetics of BB resistance in Ajaya and map the gene(s) conferring resistance. Genetic analysis in the F2 indicated a quantitative/additive nature of resistance governed by two loci with equal effects. Linked marker analysis and allelic tests revealed that one of the resistance genes is xa5. Sequence analysis of a 244 bp region of the second exon of the gene-encoding Transcription factor IIAγ (the candidate gene for xa5) confirmed the presence of xa5. Bulked-segregant analysis (BSA) revealed the putative location of the two quantitative trait loci (QTLs)/genes associated with resistance on chromosomes 5 and 8. Composite interval mapping located the first locus on Chr. 5S exactly in the genomic region spanned by xa5 and the second locus (qtl BBR 8.1) on Chr. 8L. Owing to its differential disease reaction with a set of seven hyper-virulent isolates of Xanthomonas oryzae, a map location on Chr. 8L, which was distinct from xa13 and data from allelism tests, the second resistance locus in Ajaya was determined to be novel and was designated as xaAj. A contig map spanning xaAj was constructed in silico and the genomic region was delimited to a 13.5 kb physical interval. In silico analysis of the genomic region spanning xaAj identified four putatively expressed candidate genes, one of which could be involved in imparting BB resistance in Ajaya along with xa5.


Assuntos
Mapeamento Cromossômico/métodos , Oryza/genética , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Sequência de Bases , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Resistência à Doença/genética , Genes de Plantas/genética , Padrões de Herança/genética , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Polimorfismo Genético , Homologia de Sequência do Ácido Nucleico , Virulência , Xanthomonas/patogenicidade
20.
J Adv Res ; 30: 197-211, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026296

RESUMO

Introduction: Photosystem II (PSII) protein complex plays an essential role in the entire photosynthesis process. Various known and unknown protein factors are involved in the dynamics of the PSII complex that need to be characterized in crop plants for enhancing photosynthesis efficiency and productivity. Objectives: The experiments were conducted to decipher the regulatory proteins involved in PSII dynamics of rice crop. Methods: A novel rice regulatory protein PAP90 (PSII auxiliary protein ~90 kDa) was characterized by generating a loss-of-function mutant pap90. The mutation was characterized at molecular level followed by various experiments to analyze the morphological, physiological and biochemical processes of mutant under control and abiotic stresses. Results: The pap90 mutant showed reduced photosynthesis due to D1 protein instability that subsequently causes inadequate accumulation of thylakoid membrane complexes, especially PSII and decreases PSII functional efficiency. Expression of OsFtsH family genes and proteins were induced in the mutant, which are known to play a key role in D1 protein degradation and turnover. The reduced D1 protein accumulation in the mutant increased the production of reactive oxygen species (ROS). The accumulation of ROS along with the increased activity of antioxidant enzymes and induced expression of stress-associated genes and proteins in pap90 mutant contributed to its water-limited stress tolerance ability. Conclusion: We propose that PAP90 is a key auxiliary protein that interacts with D1 protein and maintains its stability, thereby promoting subsequent assembly of the PSII and associated membrane complexes.


Assuntos
Oryza/genética , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Luz , Mutação , Oryza/metabolismo , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Estabilidade Proteica , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Tilacoides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA