Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Electrophoresis ; 41(1-2): 56-64, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31544246

RESUMO

In vitro derived simplified 3D representations of human organs or organ functionalities are predicted to play a major role in disease modeling, drug development, and personalized medicine, as they complement traditional cell line approaches and animal models. The cells for 3D organ representations may be derived from primary tissues, embryonic stem cells or induced pluripotent stem cells and come in a variety of formats from aggregates of individual or mixed cell types, self-organizing in vitro developed "organoids" and tissue mimicking chips. Microfluidic devices that allow long-term maintenance and combination with other tissues, cells or organoids are commonly referred to as "microphysiological" or "organ-on-a-chip" systems. Organ-on-a-chip technology allows a broad range of "on-chip" and "off-chip" analytical techniques, whereby "on-chip" techniques offer the possibility of real time tracking and analysis. In the rapidly expanding tool kit for real time analytical assays, mass spectrometry, combined with "on-chip" electrophoresis, and other separation approaches offer attractive emerging tools. In this review, we provide an overview of current 3D cell culture models, a compendium of current analytical strategies, and we make a case for new approaches for integrating separation science and mass spectrometry in this rapidly expanding research field.


Assuntos
Técnicas de Cultura de Células , Eletroforese , Dispositivos Lab-On-A-Chip , Espectrometria de Massas , Organoides , Animais , Cromatografia Líquida , Humanos , Modelos Biológicos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/fisiologia
2.
Microbiol Spectr ; 12(2): e0259423, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230926

RESUMO

Fungal infections are a growing global health concern due to the limited number of available antifungal therapies as well as the emergence of fungi that are resistant to first-line antimicrobials, particularly azoles and echinocandins. Development of novel, selective antifungal therapies is challenging due to similarities between fungal and mammalian cells. An attractive source of potential antifungal treatments is provided by ecological niches co-inhabited by bacteria, fungi, and multicellular organisms, where complex relationships between multiple organisms have resulted in evolution of a wide variety of selective antimicrobials. Here, we characterized several analogs of one such natural compound, collismycin A. We show that NR-6226C has antifungal activity against several pathogenic Candida species, including C. albicans and C. glabrata, whereas it only has little toxicity against mammalian cells. Mechanistically, NR-6226C selectively chelates iron, which is a limiting factor for pathogenic fungi during infection. As a result, NR-6226C treatment causes severe mitochondrial dysfunction, leading to formation of reactive oxygen species, metabolic reprogramming, and a severe reduction in ATP levels. Using an in vivo model for fungal infections, we show that NR-6226C significantly increases survival of Candida-infected Galleria mellonella larvae. Finally, our data indicate that NR-6226C synergizes strongly with fluconazole in inhibition of C. albicans. Taken together, NR-6226C is a promising antifungal compound that acts by chelating iron and disrupting mitochondrial functions.IMPORTANCEDrug-resistant fungal infections are an emerging global threat, and pan-resistance to current antifungal therapies is an increasing problem. Clearly, there is a need for new antifungal drugs. In this study, we characterized a novel antifungal agent, the collismycin analog NR-6226C. NR-6226C has a favorable toxicity profile for human cells, which is essential for further clinical development. We unraveled the mechanism of action of NR-6226C and found that it disrupts iron homeostasis and thereby depletes fungal cells of energy. Importantly, NR-6226C strongly potentiates the antifungal activity of fluconazole, thereby providing inroads for combination therapy that may reduce or prevent azole resistance. Thus, NR-6226C is a promising compound for further development into antifungal treatment.


Assuntos
Anti-Infecciosos , Micoses , Animais , Humanos , Antifúngicos/farmacologia , Fluconazol/farmacologia , Ferro , Candida , Micoses/microbiologia , Candida albicans , Anti-Infecciosos/farmacologia , Azóis/farmacologia , Candida glabrata , Quelantes de Ferro/farmacologia , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA