Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383768

RESUMO

White matter (WM) fiber tract differences are present in autism spectrum disorder (ASD) and could be important markers of behavior. One of the earliest phenotypic differences in ASD are language atypicalities. Although language has been linked to WM in typical development, no work has evaluated this association in early ASD. Participants came from the Infant Brain Imaging Study and included 321 infant siblings of children with ASD at high likelihood (HL) for developing ASD; 70 HL infants were later diagnosed with ASD (HL-ASD), and 251 HL infants were not diagnosed with ASD (HL-Neg). A control sample of 140 low likelihood infants not diagnosed with ASD (LL-Neg) were also included. Infants contributed expressive language, receptive language, and diffusion tensor imaging data at 6-, 12-, and 24 months. Mixed effects regression models were conducted to evaluate associations between WM and language trajectories. Trajectories of microstructural changes in the right arcuate fasciculus were associated with expressive language development. HL-ASD infants demonstrated a different developmental pattern compared to the HL-Neg and LL-Neg groups, wherein the HL-ASD group exhibited a positive association between WM fractional anisotropy and language whereas HL-Neg and LL-Neg groups showed weak or no association. No other fiber tracts demonstrated significant associations with language. In conclusion, results indicated arcuate fasciculus WM is linked to language in early toddlerhood for autistic toddlers, with the strongest associations emerging around 24 months. To our knowledge, this is the first study to evaluate associations between language and WM development during the pre-symptomatic period in ASD.

2.
Dev Sci ; 26(3): e13336, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36222317

RESUMO

Social motivation-the psychobiological predisposition for social orienting, seeking social contact, and maintaining social interaction-manifests in early infancy and is hypothesized to be foundational for social communication development in typical and atypical populations. However, the lack of infant social-motivation measures has hindered delineation of associations between infant social motivation, other early-arising social abilities such as joint attention, and language outcomes. To investigate how infant social motivation contributes to joint attention and language, this study utilizes a mixed longitudinal sample of 741 infants at high (HL = 515) and low (LL = 226) likelihood for ASD. Using moderated nonlinear factor analysis (MNLFA), we incorporated items from parent-report measures to establish a novel latent factor model of infant social motivation that exhibits measurement invariance by age, sex, and familial ASD likelihood. We then examined developmental associations between 6- and 12-month social motivation, joint attention at 12-15 months, and language at 24 months of age. On average, greater social-motivation growth from 6-12 months was associated with greater initiating joint attention (IJA) and trend-level increases in sophistication of responding to joint attention (RJA). IJA and RJA were both positively associated with 24-month language abilities. There were no additional associations between social motivation and future language in our path model. These findings substantiate a novel, theoretically driven approach to modeling social motivation and suggest a developmental cascade through which social motivation impacts other foundational skills. These findings have implications for the timing and nature of intervention targets to support social communication development in infancy. HIGHLIGHTS: We describe a novel, theoretically based model of infant social motivation wherein multiple parent-reported indicators contribute to a unitary latent social-motivation factor. Analyses revealed social-motivation factor scores exhibited measurement invariance for a longitudinal sample of infants at high and low familial ASD likelihood. Social-motivation growth from ages 6-12 months is associated with better 12-15-month joint attention abilities, which in turn are associated with greater 24-month language skills. Findings inform timing and targets of potential interventions to support healthy social communication in the first year of life.


Assuntos
Transtorno do Espectro Autista , Humanos , Lactente , Motivação , Idioma , Comunicação , Atenção
3.
Nature ; 542(7641): 348-351, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28202961

RESUMO

Brain enlargement has been observed in children with autism spectrum disorder (ASD), but the timing of this phenomenon, and the relationship between ASD and the appearance of behavioural symptoms, are unknown. Retrospective head circumference and longitudinal brain volume studies of two-year olds followed up at four years of age have provided evidence that increased brain volume may emerge early in development. Studies of infants at high familial risk of autism can provide insight into the early development of autism and have shown that characteristic social deficits in ASD emerge during the latter part of the first and in the second year of life. These observations suggest that prospective brain-imaging studies of infants at high familial risk of ASD might identify early postnatal changes in brain volume that occur before an ASD diagnosis. In this prospective neuroimaging study of 106 infants at high familial risk of ASD and 42 low-risk infants, we show that hyperexpansion of the cortical surface area between 6 and 12 months of age precedes brain volume overgrowth observed between 12 and 24 months in 15 high-risk infants who were diagnosed with autism at 24 months. Brain volume overgrowth was linked to the emergence and severity of autistic social deficits. A deep-learning algorithm that primarily uses surface area information from magnetic resonance imaging of the brain of 6-12-month-old individuals predicted the diagnosis of autism in individual high-risk children at 24 months (with a positive predictive value of 81% and a sensitivity of 88%). These findings demonstrate that early brain changes occur during the period in which autistic behaviours are first emerging.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/psicologia , Pré-Escolar , Saúde da Família , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Neuroimagem , Prognóstico , Risco , Comportamento Social
4.
Child Dev ; 93(2): 468-483, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34708871

RESUMO

Infant vocalizations are early-emerging communicative markers shown to be atypical in autism spectrum disorder (ASD), but few longitudinal, prospective studies exist. In this study, 23,850 infant vocalizations from infants at low (LR)- and high (HR)-risk for ASD (HR-ASD = 23, female = 3; HR-Neg = 35, female = 13; LR = 32, female = 10; 80% White; collected from 2007 to 2017 near Philadelphia) were analyzed at 6, 12, and 24 months. At 12 months, HR-ASD infants produced fewer vocalizations than HR-Neg infants. From 6 to 24 months, HR-Neg infants demonstrated steeper vocalization growth compared to HR-ASD and LR infants. Finally, among HR infants, vocalizing at 12 months was associated with language, social phenotype, and diagnosis at age 2. Infant vocalizing is an objective behavioral marker that could facilitate earlier detection of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/diagnóstico , Biomarcadores , Comunicação , Feminino , Humanos , Lactente , Fenótipo , Estudos Prospectivos , Irmãos
5.
Neuroimage ; 215: 116821, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32276067

RESUMO

The corpus callosum (CC) is the largest connective pathway in the human brain, linking cerebral hemispheres. There is longstanding debate in the scientific literature whether sex differences are evident in this structure, with many studies indicating the structure is larger in females. However, there are few data pertaining to this issue in infancy, during which time the most rapid developmental changes to the CC occur. In this study, we examined longitudinal brain imaging data collected from 104 infants at ages 6, 12, and 24 months. We identified sex differences in brain-size adjusted CC area and thickness characterized by a steeper rate of growth in males versus females from ages 6-24 months. In contrast to studies of older children and adults, CC size was larger for male compared to female infants. Based on diffusion tensor imaging data, we found that CC thickness is significantly associated with underlying microstructural organization. However, we observed no sex differences in the association between microstructure and thickness, suggesting that the role of factors such as axon density and/or myelination in determining CC size is generally equivalent between sexes. Finally, we found that CC length was negatively associated with nonverbal ability among females.


Assuntos
Desenvolvimento Infantil/fisiologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/crescimento & desenvolvimento , Imagem de Tensor de Difusão/métodos , Caracteres Sexuais , Pré-Escolar , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Imagem Multimodal/métodos
6.
Dev Psychopathol ; 32(4): 1230-1239, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32893764

RESUMO

Parents play an essential role in supporting child development by providing a safe home, proper nutrition, and rich educational opportunities. In this article we focus on the role of caregiver speech in supporting development of young children with autism spectrum disorder (ASD). We review studies from typically developing children and children with autism showing that rich and responsive caregiver speech supports language development. Autism intervention studies that target caregiver speech are reviewed as are recent scientific advances from studies of typical development. The strengths and weakness of different techniques for collecting language data from caregivers and children are reviewed, and natural language samples are recommended as best practice for language research in autism. We conclude that caregivers play a powerful role in shaping their children's development and encourage researchers to adapt parent-mediated intervention studies to acknowledge individual differences in parents by using a personalized medicine approach.


Assuntos
Transtorno do Espectro Autista , Cuidadores , Pré-Escolar , Humanos , Lactente , Desenvolvimento da Linguagem , Pais , Fala
7.
Cereb Cortex ; 28(2): 750-763, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29186388

RESUMO

Infant gross motor development is vital to adaptive function and predictive of both cognitive outcomes and neurodevelopmental disorders. However, little is known about neural systems underlying the emergence of walking and general gross motor abilities. Using resting state fcMRI, we identified functional brain networks associated with walking and gross motor scores in a mixed cross-sectional and longitudinal cohort of infants at high and low risk for autism spectrum disorder, who represent a dimensionally distributed range of motor function. At age 12 months, functional connectivity of motor and default mode networks was correlated with walking, whereas dorsal attention and posterior cingulo-opercular networks were implicated at age 24 months. Analyses of general gross motor function also revealed involvement of motor and default mode networks at 12 and 24 months, with dorsal attention, cingulo-opercular, frontoparietal, and subcortical networks additionally implicated at 24 months. These findings suggest that changes in network-level brain-behavior relationships underlie the emergence and consolidation of walking and gross motor abilities in the toddler period. This initial description of network substrates of early gross motor development may inform hypotheses regarding neural systems contributing to typical and atypical motor outcomes, as well as neurodevelopmental disorders associated with motor dysfunction.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Desenvolvimento Infantil/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento , Caminhada/fisiologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Pré-Escolar , Feminino , Humanos , Lactente , Estudos Longitudinais , Imageamento por Ressonância Magnética/tendências , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/crescimento & desenvolvimento
8.
Child Dev ; 89(2): e60-e73, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28295208

RESUMO

Children's early language environments are related to later development. Little is known about this association in siblings of children with autism spectrum disorder (ASD), who often experience language delays or have ASD. Fifty-nine 9-month-old infants at high or low familial risk for ASD contributed full-day in-home language recordings. High-risk infants produced more vocalizations than low-risk peers; conversational turns and adult words did not differ by group. Vocalization differences were driven by a subgroup of "hypervocal" infants. Despite more vocalizations overall, these infants engaged in less social babbling during a standardized clinic assessment, and they experienced fewer conversational turns relative to their rate of vocalizations. Two ways in which these individual and environmental differences may relate to subsequent development are discussed.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Desenvolvimento Infantil/fisiologia , Comportamento do Lactente/fisiologia , Irmãos , Comportamento Social , Comportamento Verbal/fisiologia , Feminino , Humanos , Lactente , Masculino , Risco , Processamento de Sinais Assistido por Computador
9.
Dev Sci ; 20(2)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26490257

RESUMO

The association between developmental trajectories of language-related white matter fiber pathways from 6 to 24 months of age and individual differences in language production at 24 months of age was investigated. The splenium of the corpus callosum, a fiber pathway projecting through the posterior hub of the default mode network to occipital visual areas, was examined as well as pathways implicated in language function in the mature brain, including the arcuate fasciculi, uncinate fasciculi, and inferior longitudinal fasciculi. The hypothesis that the development of neural circuitry supporting domain-general orienting skills would relate to later language performance was tested in a large sample of typically developing infants. The present study included 77 infants with diffusion weighted MRI scans at 6, 12 and 24 months and language assessment at 24 months. The rate of change in splenium development varied significantly as a function of language production, such that children with greater change in fractional anisotropy (FA) from 6 to 24 months produced more words at 24 months. Contrary to findings from older children and adults, significant associations between language production and FA in the arcuate, uncinate, or left inferior longitudinal fasciculi were not observed. The current study highlights the importance of tracing brain development trajectories from infancy to fully elucidate emerging brain-behavior associations while also emphasizing the role of the splenium as a key node in the structural network that supports the acquisition of spoken language.


Assuntos
Desenvolvimento da Linguagem , Idioma , Vias Neurais/fisiologia , Inteligibilidade da Fala/fisiologia , Desenvolvimento Infantil , Corpo Caloso , Imagem de Difusão por Ressonância Magnética , Humanos , Lactente , Fibras Nervosas Mielinizadas
10.
Autism Res ; 17(4): 838-851, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38204321

RESUMO

Gestures are an important social communication skill that infants and toddlers use to convey their thoughts, ideas, and intentions. Research suggests that early gesture use has important downstream impacts on developmental processes, such as language learning. However, autistic children are more likely to have challenges in their gestural development. The current study expands upon previous literature on the differences in gesture use between young autistic and non-autistic toddlers by collecting data using a parent-report questionnaire called the MCDI-Words and Gestures at three time points, 12, 18, and 24 months of age. Results (N = 467) showed that high-likelihood infants who later met diagnostic criteria for ASD (n = 73 HL-ASD) have attenuated gesture growth from 12 to 24 months for both deictic gestures and symbolic gestures when compared to high-likelihood infants who later did not meet criteria for ASD (n = 249 HL-Neg) and low-likelihood infants who did not meet criteria for ASD (n = 145 LL-Neg). Other social communicative skills, like play behaviors and imitation, were also found to be impacted in young autistic children when compared to their non-autistic peers. Understanding early differences in social communication growth before a formal autism diagnosis can provide important insights for early intervention.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Lactente , Humanos , Transtorno Autístico/diagnóstico , Gestos , Transtorno do Espectro Autista/diagnóstico , Desenvolvimento da Linguagem
11.
Dev Cogn Neurosci ; 65: 101333, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154378

RESUMO

Amygdala function is implicated in the pathogenesis of autism spectrum disorder (ASD) and anxiety. We investigated associations between early trajectories of amygdala growth and anxiety and ASD outcomes at school age in two longitudinal studies: high- and low-familial likelihood for ASD, Infant Brain Imaging Study (IBIS, n = 257) and typically developing (TD) community sample, Early Brain Development Study (EBDS, n = 158). Infants underwent MRI scanning at up to 3 timepoints from neonate to 24 months. Anxiety was assessed at 6-12 years. Linear multilevel modeling tested whether amygdala volume growth was associated with anxiety symptoms at school age. In the IBIS sample, children with higher anxiety showed accelerated amygdala growth from 6 to 24 months. ASD diagnosis and ASD familial likelihood were not significant predictors. In the EBDS sample, amygdala growth from birth to 24 months was associated with anxiety. More anxious children had smaller amygdala volume and slower rates of amygdala growth. We explore reasons for the contrasting results between high-familial likelihood for ASD and TD samples, grounding results in the broader literature of variable associations between early amygdala volume and later anxiety. Results have the potential to identify mechanisms linking early amygdala growth to later anxiety in certain groups.


Assuntos
Transtorno do Espectro Autista , Criança , Lactente , Recém-Nascido , Humanos , Ansiedade , Transtornos de Ansiedade , Encéfalo , Imageamento por Ressonância Magnética/métodos , Tonsila do Cerebelo
12.
Dev Cogn Neurosci ; 61: 101240, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060675

RESUMO

Decades of research have established that the home language environment, especially quality of caregiver speech, supports language acquisition during infancy. However, the neural mechanisms behind this phenomenon remain under studied. In the current study, we examined associations between the home language environment and structural coherence of white matter tracts in 52 typically developing infants from English speaking homes in a western society. Infants participated in at least one MRI brain scan when they were 3, 6, 12, and/or 24 months old. Home language recordings were collected when infants were 9 and/or 15 months old. General linear regression models indicated that infants who heard the most adult words and participated in the most conversational turns at 9 months of age also had the lowest fractional anisotropy in the left posterior parieto-temporal arcuate fasciculus at 24 months. Similarly, infants who vocalized the most at 9 months also had the lowest fractional anisotropy in the same tract at 6 months of age. This is one of the first studies to report significant associations between caregiver speech collected in the home and white matter structural coherence in the infant brain. The results are in line with prior work showing that protracted white matter development during infancy confers a cognitive advantage.


Assuntos
Substância Branca , Adulto , Humanos , Lactente , Pré-Escolar , Imagem de Tensor de Difusão/métodos , Idioma , Encéfalo , Imageamento por Ressonância Magnética
13.
Artigo em Inglês | MEDLINE | ID: mdl-37168581

RESUMO

The early emergence of social communication challenges and their impact on language in infants later diagnosed with autism has sparked many early intervention programs that target social communication skills. While research has consistently shown lower scores on social communication assessments in the first year of life, there is limited research at 12-months exploring associations between different dimensions of social communication and later language. Understanding associations between early social communication skills and language would enhance our ability to choose high priority intervention goals that will impact downstream language skills. The current study used a standardized assessment to profile social communication skills across 516 infants with a high (HL) or low likelihood (LL-Neg) for autism (84% White, 60% Male), based on the presence of a sibling with autism in the family. The primary aim of the study was to profile social communication skill development in the second year of life and to evaluate associations between social communication skills and later language. HL infants who met criteria for autism (HL-ASD, N = 81) demonstrated widespread reductions in social communication skills at 12-months compared to HL infants who did not meet criteria for autism (HL-Neg, N = 277) and LL-Neg (N = 158) infants. Across all infants in the study, those with better social communication skills at 12-months had better language at 24-months. However, within group analyses indicated that infants who met criteria for autism did not show this developmental coupling until 24-months-of-age at which point social communication was positively associated with downstream language skills. The cascading pattern of reduced social communication skills as well as overall significant positive associations with later language provide further evidence for the need to support developing social communication skills prior to formal autism diagnosis, a goal that could possibly be reached through pre-emptive interventions.

14.
J Am Acad Child Adolesc Psychiatry ; 61(3): 413-422, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33965519

RESUMO

OBJECTIVE: With development, infants become increasingly responsive to the many attention-sharing cues of adults; however, little work has examined how this ability emerges in typical development or in the context of early autism spectrum disorder (ASD). This study characterized variation in the type of cue needed to elicit a response to joint attention (RJA) using the Dimensional Joint Attention Assessment (DJAA) during naturalistic play. METHOD: We measured the average redundancy of cue type required for infants to follow RJA bids from an experimenter, as well as their response consistency, in 268 infants at high (HR, n = 68) and low (LR, N = 200) familial risk for ASD. Infants were assessed between 8 and 18 months of age and followed up with developmental and clinical assessments at 24 or 36 months. Our sample consisted of LR infants, as well as HR infants who did (HR-ASD) and did not (HR-neg) develop ASD at 24 months. RESULTS: We found that HR and LR infants developed abilities to respond to less redundant (more sophisticated) RJA cues at different rates, and that HR-ASD infants displayed delayed abilities, identifiable as early as 9 months, compared to both HR-neg and LR infants. Interestingly, results suggest that HR-neg infants may exhibit a propensity to respond to less redundant (more sophisticated) RJA cues relative to both HR-ASD and LR infants. CONCLUSION: Using an approach to characterize variable performance of RJA cue-reading abilities, findings from this study enhance our understanding of both typical and ASD-related proficiencies and deficits in RJA development.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Adulto , Atenção , Criança , Sinais (Psicologia) , Humanos , Lactente , Irmãos
15.
Am J Psychiatry ; 179(8): 562-572, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35331012

RESUMO

OBJECTIVE: Previous research has demonstrated that the amygdala is enlarged in children with autism spectrum disorder (ASD). However, the precise onset of this enlargement during infancy, how it relates to later diagnostic behaviors, whether the timing of enlargement in infancy is specific to the amygdala, and whether it is specific to ASD (or present in other neurodevelopmental disorders, such as fragile X syndrome) are all unknown. METHODS: Longitudinal MRIs were acquired at 6-24 months of age in 29 infants with fragile X syndrome, 58 infants at high likelihood for ASD who were later diagnosed with ASD, 212 high-likelihood infants not diagnosed with ASD, and 109 control infants (1,099 total scans). RESULTS: Infants who developed ASD had typically sized amygdala volumes at 6 months, but exhibited significantly faster amygdala growth between 6 and 24 months, such that by 12 months the ASD group had significantly larger amygdala volume (Cohen's d=0.56) compared with all other groups. Amygdala growth rate between 6 and 12 months was significantly associated with greater social deficits at 24 months when the infants were diagnosed with ASD. Infants with fragile X syndrome had a persistent and significantly enlarged caudate volume at all ages between 6 and 24 months (d=2.12), compared with all other groups, which was significantly associated with greater repetitive behaviors. CONCLUSIONS: This is the first MRI study comparing fragile X syndrome and ASD in infancy, demonstrating strikingly different patterns of brain and behavior development. Fragile X syndrome-related changes were present from 6 months of age, whereas ASD-related changes unfolded over the first 2 years of life, starting with no detectable group differences at 6 months. Increased amygdala growth rate between 6 and 12 months occurs prior to social deficits and well before diagnosis. This gradual onset of brain and behavior changes in ASD, but not fragile X syndrome, suggests an age- and disorder-specific pattern of cascading brain changes preceding autism diagnosis.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Síndrome do Cromossomo X Frágil , Adolescente , Adulto , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/diagnóstico por imagem , Humanos , Lactente , Imageamento por Ressonância Magnética , Adulto Jovem
16.
Am J Psychiatry ; 179(8): 573-585, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35615814

RESUMO

OBJECTIVE: Autism spectrum disorder (ASD) is heritable, and younger siblings of ASD probands are at higher likelihood of developing ASD themselves. Prospective MRI studies of siblings report that atypical brain development precedes ASD diagnosis, although the link between brain maturation and genetic factors is unclear. Given that familial recurrence of ASD is predicted by higher levels of ASD traits in the proband, the authors investigated associations between proband ASD traits and brain development among younger siblings. METHODS: In a sample of 384 proband-sibling pairs (89 pairs concordant for ASD), the authors examined associations between proband ASD traits and sibling brain development at 6, 12, and 24 months in key MRI phenotypes: total cerebral volume, cortical surface area, extra-axial cerebrospinal fluid, occipital cortical surface area, and splenium white matter microstructure. Results from primary analyses led the authors to implement a data-driven approach using functional connectivity MRI at 6 months. RESULTS: Greater levels of proband ASD traits were associated with larger total cerebral volume and surface area and larger surface area and reduced white matter integrity in components of the visual system in siblings who developed ASD. This aligned with weaker functional connectivity between several networks and the visual system among all siblings during infancy. CONCLUSIONS: The findings provide evidence that specific early brain MRI phenotypes of ASD reflect quantitative variation in familial ASD traits. Multimodal anatomical and functional convergence on cortical regions, fiber pathways, and functional networks involved in visual processing suggest that inherited liability has a role in shaping the prodromal development of visual circuitry in ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Irmãos
17.
J Am Acad Child Adolesc Psychiatry ; 60(8): 968-977, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33161063

RESUMO

OBJECTIVE: This study aimed to develop a classifier for infants at 12 months of age based on a parent-report measure (the First Year Inventory 2.0 [FYI]), for the following reasons: (1) to classify infants at elevated risk, above and beyond that attributable to familial risk status for ASD; and (2) to serve as a starting point to refine an approach for risk estimation in population samples. METHOD: A total of 54 high-familial risk (HR) infants later diagnosed with ASD (HR-ASD), 183 HR infants not diagnosed with ASD at 24 months of age (HR-Neg), and 72 low-risk controls participated in the study. All infants contributed FYI data at 12 months of age and had a diagnostic assessment for ASD at age 24 months. A data-driven, cross-validated analytic approach was used to develop a classifier to determine screening accuracy (eg, sensitivity) of the FYI to classify HR-ASD and HR-Neg. RESULTS: The newly developed FYI classifier had an estimated sensitivity of 0.71 (95% CI: 0.50, 0.91) and specificity of 0.72 (95% CI: 0.49, 0.91). CONCLUSION: This classifier demonstrates the potential to improve current screening for ASD risk at 12 months of age in infants already at elevated familial risk for ASD, increasing opportunities for detection of autism risk in infancy. Findings from this study highlight the utility of combining parent-report measures with machine learning approaches.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/epidemiologia , Pré-Escolar , Humanos , Lactente
18.
Am J Psychiatry ; 177(6): 518-525, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32375538

RESUMO

OBJECTIVE: Sleep patterns in children with autism spectrum disorder (ASD) appear to diverge from typical development in the second or third year of life. Little is known, however, about the occurrence of sleep problems in infants who later develop ASD and possible effects on early brain development. In a longitudinal neuroimaging study of infants at familial high or low risk for ASD, parent-reported sleep onset problems were examined in relation to subcortical brain volumes in the first 2 years of life. METHODS: A total of 432 infants were included across three study groups: infants at high risk who developed ASD (N=71), infants at high risk who did not develop ASD (N=234), and infants at low risk (N=127). Sleep onset problem scores (derived from an infant temperament measure) were evaluated in relation to longitudinal high-resolution T1 and T2 structural imaging data acquired at 6, 12, and 24 months of age. RESULTS: Sleep onset problems were more common at 6-12 months among infants who later developed ASD. Infant sleep onset problems were related to hippocampal volume trajectories from 6 to 24 months only for infants at high risk who developed ASD. Brain-sleep relationships were specific to the hippocampus; no significant relationships were found with volume trajectories of other subcortical structures examined (the amygdala, caudate, globus pallidus, putamen, and thalamus). CONCLUSIONS: These findings provide initial evidence that sleep onset problems in the first year of life precede ASD diagnosis and are associated with altered neurodevelopmental trajectories in infants at high familial risk who go on to develop ASD. If replicated, these findings could provide new insights into a potential role of sleep difficulties in the development of ASD.


Assuntos
Transtorno do Espectro Autista/epidemiologia , Hipotálamo/diagnóstico por imagem , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/patologia , Pré-Escolar , Feminino , Globo Pálido/diagnóstico por imagem , Globo Pálido/patologia , Humanos , Hipotálamo/patologia , Lactente , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Putamen/diagnóstico por imagem , Putamen/patologia , Distúrbios do Início e da Manutenção do Sono/diagnóstico por imagem , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Latência do Sono , Tálamo/diagnóstico por imagem , Tálamo/patologia
19.
J Neurodev Disord ; 12(1): 5, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024459

RESUMO

BACKGROUND: Younger siblings of children with autism spectrum disorder (ASD) are at increased likelihood of receiving an ASD diagnosis and exhibiting other developmental concerns. It is unknown how quantitative variation in ASD traits and broader developmental domains in older siblings with ASD (probands) may inform outcomes in their younger siblings. METHODS: Participants included 385 pairs of toddler siblings and probands from the Infant Brain Imaging Study. ASD probands (mean age 5.5 years, range 1.7 to 15.5 years) were phenotyped using the Autism Diagnostic Interview-Revised (ADI-R), the Social Communication Questionnaire (SCQ), and the Vineland Adaptive Behavior Scales, Second Edition (VABS-II). Siblings were assessed using the ADI-R, VABS-II, Mullen Scales of Early Learning (MSEL), and Autism Diagnostic Observation Schedule (ADOS) and received a clinical best estimate diagnosis at 24 months using DSM-IV-TR criteria (n = 89 concordant for ASD; n = 296 discordant). We addressed two aims: (1) to determine whether proband characteristics are predictive of recurrence in siblings and (2) to assess associations between proband traits and sibling dimensional outcomes at 24 months. RESULTS: Regarding recurrence risk, proband SCQ scores were found to significantly predict sibling 24-month diagnostic outcome (OR for a 1-point increase in SCQ = 1.06; 95% CI = 1.01, 1.12). Regarding quantitative trait associations, we found no significant correlations in ASD traits among proband-sibling pairs. However, quantitative variation in proband adaptive behavior, communication, and expressive and receptive language was significantly associated with sibling outcomes in the same domains; proband scores explained 9-18% of the variation in cognition and behavior in siblings with ASD. Receptive language was particularly strongly associated in concordant pairs (ICC = 0.50, p < 0.001). CONCLUSIONS: Proband ASD symptomology, indexed by the SCQ, is a predictor of familial ASD recurrence risk. While quantitative variation in social communication and restricted and repetitive behavior were not associated among sibling pairs, standardized ratings of proband language and communication explained significant variation in the same domains in the sibling at 24 months, especially among toddlers with an ASD diagnosis. These data suggest that proband characteristics can alert clinicians to areas of developmental concern for young children with familial risk for ASD.


Assuntos
Transtorno do Espectro Autista/genética , Irmãos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Fenótipo
20.
J Neurodev Disord ; 11(1): 33, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31839003

RESUMO

BACKGROUND: Early intervention is a valuable tool to support the development of toddlers with neurodevelopmental disorders. With recent research advances in early identification that allow for pre-symptomatic detection of autism in infancy, scientists are looking forward to intervention during infancy. These advances may be supported by the identification of biologically based treatment and outcome measures that are sensitive and dimensional. The purpose of this review is to evaluate white matter neurodevelopment as a monitoring biomarker for early treatment of neurodevelopmental disorders. Fragile X syndrome (FXS) and autism spectrum disorder (ASD) as used as exemplars. White matter has unique neurobiology, including a prolonged period of dynamic development. This developmental pattern may make white matter especially responsive to treatment. White matter develops aberrantly in children with ASD and FXS. Histologic studies in rodents have provided targets for FXS pharmacological intervention. However, pharmaceutical clinical trials in humans failed to garner positive clinical results. In this article, we argue that the use of neurobiological monitoring biomarkers may overcome some of these limitations, as they are objective, not susceptible to placebo effects, and are dimensional in nature. SHORT CONCLUSION: As the field moves towards earlier detection and early intervention for neurodevelopmental disorders, we encourage scientists to consider the advantages of using neurobiological features as monitoring biomarkers.


Assuntos
Encéfalo/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/terapia , Substância Branca/diagnóstico por imagem , Animais , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/terapia , Biomarcadores , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Intervenção Médica Precoce , Síndrome do Cromossomo X Frágil/diagnóstico por imagem , Síndrome do Cromossomo X Frágil/patologia , Síndrome do Cromossomo X Frágil/terapia , Humanos , Transtornos do Neurodesenvolvimento/patologia , Substância Branca/crescimento & desenvolvimento , Substância Branca/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA