Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Chem Inf Model ; 61(2): 587-602, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33502191

RESUMO

Cholestatic liver injury is frequently associated with drug inhibition of bile salt transporters, such as the bile salt export pump (BSEP). Reliable in silico models to predict BSEP inhibition directly from chemical structures would significantly reduce costs during drug discovery and could help avoid injury to patients. We report our development of classification and regression models for BSEP inhibition with substantially improved performance over previously published models. We assessed the performance effects of different methods of chemical featurization, data set partitioning, and class labeling and identified the methods producing models that generalized best to novel chemical entities.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Colestase , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP , Humanos , Aprendizado de Máquina
2.
Protein Expr Purif ; 73(2): 167-76, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20457255

RESUMO

Phosphoinositide 3-kinases have been targeted for therapeutic research because they are key components of a cell signaling cascade controlling proliferation, growth, and survival. Direct activation of the PI3Kalpha pathway contributes to the development and progression of solid tumors in breast, endometrial, colon, ovarian, and gastric cancers. In the context of a drug discovery effort, the availability of a robust crystallographic system is a means to understand the subtle differences between ATP competitive inhibitor interactions with the active site and their selectivity against other PI3Kinase enzymes. To generate a suitable recombinant design for this purpose, a p85alpha-p110alpha fusion system was developed which enabled the expression and purification of a stoichiometrically homogeneous, constitutively active enzyme for structure determination with potent ATP competitive inhibitors (Raha et al., in preparation) [56]. This approach has yielded preparations with activity and inhibition characteristics comparable to those of the full-length PI3Kalpha from which X-ray diffracting crystals were grown with inhibitors bound in the active site.


Assuntos
Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Fusão Gênica Artificial , Baculoviridae/metabolismo , Sítios de Ligação , Células Cultivadas , Classe II de Fosfatidilinositol 3-Quinases/química , Classe II de Fosfatidilinositol 3-Quinases/genética , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Desenho de Fármacos , Concentração Inibidora 50 , Modelos Moleculares , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Spodoptera/citologia , Spodoptera/metabolismo , Difração de Raios X
3.
Bioorg Med Chem Lett ; 19(1): 27-30, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19058966

RESUMO

Endothelial lipase (EL) activity has been implicated in HDL catabolism, vascular inflammation, and atherogenesis, and inhibitors are therefore expected to be useful for the treatment of cardiovascular disease. Sulfonylfuran urea 1 was identified in a high-throughput screening campaign as a potent and non-selective EL inhibitor. A lead optimization effort was undertaken to improve potency and selectivity, and modifications leading to improved LPL selectivity were identified. Radiolabeling studies were undertaken to establish the mechanism of action for these inhibitors, which were ultimately demonstrated to be irreversible inhibitors.


Assuntos
Furanos , Lipase/antagonistas & inibidores , Compostos de Sulfonilureia/síntese química , Animais , Doenças Cardiovasculares/tratamento farmacológico , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Endotélio/enzimologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Compostos de Sulfonilureia/farmacologia
4.
SLAS Discov ; 24(2): 175-189, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30383469

RESUMO

Nrf2, a master regulator of the phase II gene response to stress, is kept at low concentrations in the cell through binding to Keap1, an adaptor protein for the Cul3 ubiquitin ligase complex. To identify Nrf2 activators, two separate time-resolved fluorescence resonance energy transfer (TR-FRET) assays were developed to monitor the binding of Nrf2-Keap1 and Cul3-Keap1, respectively. The triterpenoid, 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole (CDDO-Im) and its analogs, exhibited approximately 100-fold better potency in the Cul3-Keap1 assay than in the Nrf2-Keap1 assay, and this difference was more profound at 37 °C than at room temperature in the Nrf2-Keap1 assay, but this phenomenon was not observed in the Cul3-Keap1 assay. A full diversity screen of approximately 2,200,000 GSK compounds was run with the Cul3-Keap1 TR-FRET assay and multiple chemical series were identified and characterized.


Assuntos
Proteínas Culina/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Ensaios de Triagem em Larga Escala/métodos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Células HEK293 , Humanos , Concentração Inibidora 50 , Cinética , Ligação Proteica , Temperatura , Fatores de Tempo
5.
Mol Biotechnol ; 39(2): 127-34, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18327553

RESUMO

Cortisol is an important glucocorticoid in humans that regulates many physiological processes. Human 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone to cortisol in vivo and has emerged as an appealing therapeutic target for treating metabolic diseases. Here, we report a sensitive and robust high-throughput (HT) cell-based assay for screening 11beta-HSD1 inhibitors. This assay utilizes a HEK293 cell line transduced by a BacMam virus expressing human 11beta-HSD1. The enzyme activity in the cells was measured by quantifying cortisol levels released into the cell culture supernatant via a competitive homogenous time-resolved fluorescence (HTRF) method. We show that 11beta-HSD1 activity in supernatant of BacMam-transduced HEK293 cells increases with 11beta-HSD1 BacMam virus load in a dose-dependent manner, and is comparable to the enzyme activity detected in differentiated mouse adipocytes. In addition, we show that co-expression of hexose-6-phosphate dehydrogenase (H6PDH) is not required for the enzyme to function effectively as an oxo-reductase. This assay has been developed in low-volume 384-well format and it is sensitive, robust, and amenable to HT screening.


Assuntos
Fluorimunoensaio/métodos , Rim/enzimologia , Transdução Genética/métodos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Células 3T3-L1 , Adipócitos/enzimologia , Animais , Desidrogenases de Carboidrato/metabolismo , Sobrevivência Celular , Cortisona/metabolismo , Meios de Cultura/análise , Humanos , Hidrocortisona/metabolismo , Camundongos
6.
Nat Biotechnol ; 21(4): 392-8, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12652312

RESUMO

Vascular immunotargeting may facilitate the rapid and specific delivery of therapeutic agents to endothelial cells. We investigated whether targeting of an antioxidant enzyme, catalase, to the pulmonary endothelium alleviates oxidative stress in an in vivo model of lung transplantation. Intravenously injected enzymes, conjugated with an antibody to platelet-endothelial cell adhesion molecule-1, accumulate in the pulmonary vasculature and retain their activity during prolonged cold storage and transplantation. Immunotargeting of catalase to donor rats augments the antioxidant capacity of the pulmonary endothelium, reduces oxidative stress, ameliorates ischemia-reperfusion injury, prolongs the acceptable cold ischemia period of lung grafts, and improves the function of transplanted lung grafts. These findings validate the therapeutic potential of vascular immunotargeting as a drug delivery strategy to reduce endothelial injury. Potential applications of this strategy include improving the outcome of clinical lung transplantation and treating a wide variety of endothelial disorders.


Assuntos
Anticorpos Monoclonais/farmacocinética , Catalase/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Antioxidantes/administração & dosagem , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Imunoterapia/métodos , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Transplante de Pulmão/efeitos adversos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/imunologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo
7.
Free Radic Biol Med ; 34(8): 1035-46, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12684088

RESUMO

Vascular immunotargeting to Platelet-Endothelial Cell Adhesion Molecule-1 (PECAM) facilitates drug delivery to endothelium. We used human PECAM-transfected REN cells (REN/PECAM) as a model to compare targeting of antioxidant enzyme catalase conjugated with PECAM antibody (anti-PECAM/catalase) with adenoviral catalase delivery. Anti-PECAM/(125)I-catalase bound to REN/PECAM, but not to REN cells (70 vs. 1 ng/well vs. < 2 ng/well of unmodified catalase). At a virus-to-cell ratio of 1, elevated levels of catalase protein were detected by immunoblotting after adenoviral transfection of REN/PECAM and REN cells alike; H(2)O(2)-degrading activity of cell lysates was elevated at ratios of 10 and higher. REN/PECAM cells internalize 66% of cell-bound anti-PECAM/(125)I-catalase. Confocal microscopy localized anti-PECAM/catalase to intracellular vesicles, while catalase expressed by adenovirus was distributed in vesicles and throughout the cytosol. Within 15 min of delivery, anti-PECAM/catalase augmented H(2)O(2)-degrading activity and survival of H(2)O(2)-exposed REN/PECAM cells. The effects of conjugate delivery reached a plateau within 1 h and declined to the basal level within 12 h. In contrast, adenoviral delivery required several hours for transduction and development of the effects, but permitted much longer duration of protection (at least 48 h). Simultaneous exposure of REN/PECAM cells to anti-PECAM/catalase and catalase-encoding adenovirus afforded protection against H(2)O(2) with a rapid onset and a prolonged duration. Therefore, PECAM-directed immunotargeting provides a specific, antigen-directed intracellular delivery of catalase that affords a rapid but transient protection against H(2)O(2) and may complement gene delivery strategies for antioxidant protection.


Assuntos
Catalase/metabolismo , Peróxido de Hidrogênio/química , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Adenoviridae/genética , Antioxidantes/metabolismo , Biotinilação , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Endotélio Vascular/metabolismo , Radicais Livres , Terapia Genética/métodos , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Immunoblotting , Cinética , Lipossomos/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Estresse Oxidativo , Fatores de Tempo , Transfecção
8.
Assay Drug Dev Technol ; 10(6): 514-24, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22574653

RESUMO

Nuclear-factor-E2-related transcription factor 2 (Nrf2) regulates a large panel of Phase II genes and plays an important role in cell survival. Nrf2 activation has been shown as preventing cigarette smoke-induced alveolar enlargement in mice. Therefore, activation of the Nrf2 protein by small-molecule activators represents an attractive therapeutic strategy that is used for chronic obstructive pulmonary disease. In this article, we describe a cell-based luciferase enzyme fragment complementation assay that identifies Nrf2 activators. This assay is based on the interaction of Nrf2 with its nuclear partner MafK or runt-related transcription factor 2 (RunX2) and is dependent on the reconstitution of a "split" luciferase. Firefly luciferase is split into two fragments, which are genetically fused to Nrf2 and MafK or RunX2, respectively. BacMam technology was used to deliver the fusion constructs into cells for expression of the tagged proteins. When the BacMam-transduced cells were treated with Nrf2 activators, the Nrf2 protein was stabilized and translocated into the nucleus where it interacted with MafK or RunX2. The interaction of Nrf2 and MafK or RunX2 brought together the two luciferase fragments that form an active luciferase. The assay was developed in a 384-well format and was optimized by titrating the BacMam concentration, transduction time, cell density, and fetal bovine serum concentration. It was further validated with known Nrf2 activators. Our data show that this assay is robust, sensitive, and amenable to high throughput screening of a large compound collection for the identification of novel Nrf2 activators.


Assuntos
Teste de Complementação Genética/métodos , Ensaios de Triagem em Larga Escala/métodos , Luciferases/metabolismo , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Algoritmos , Automação , Contagem de Células , Clonagem Molecular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Meios de Cultura , Citomegalovirus/genética , Interpretação Estatística de Dados , Dimetil Sulfóxido/farmacologia , Vetores Genéticos , Células HEK293 , Humanos , Fator 2 Relacionado a NF-E2/agonistas , Reação em Cadeia da Polimerase em Tempo Real , Bibliotecas de Moléculas Pequenas , Transdução Genética
9.
PLoS One ; 7(8): e43019, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952628

RESUMO

Proline-specific dipeptidyl peptidases (DPPs) are emerging targets for drug development. DPP4 inhibitors are approved in many countries, and other dipeptidyl peptidases are often referred to as DPP4 activity- and/or structure-homologues (DASH). Members of the DASH family have overlapping substrate specificities, and, even though they share low sequence identity, therapeutic or clinical cross-reactivity is a concern. Here, we report the structure of human DPP7 and its complex with a selective inhibitor Dab-Pip (L-2,4-diaminobutyryl-piperidinamide) and compare it with that of DPP4. Both enzymes share a common catalytic domain (α/ß-hydrolase). The catalytic pocket is located in the interior of DPP7, deep inside the cleft between the two domains. Substrates might access the active site via a narrow tunnel. The DPP7 catalytic triad is completely conserved and comprises Ser162, Asp418 and His443 (corresponding to Ser630, Asp708 and His740 in DPP4), while other residues lining the catalytic pockets differ considerably. The "specificity domains" are structurally also completely different exhibiting a ß-propeller fold in DPP4 compared to a rare, completely helical fold in DPP7. Comparing the structures of DPP7 and DPP4 allows the design of specific inhibitors and thus the development of less cross-reactive drugs. Furthermore, the reported DPP7 structures shed some light onto the evolutionary relationship of prolyl-specific peptidases through the analysis of the architectural organization of their domains.


Assuntos
Dipeptidil Peptidase 4/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Prolina/química , Aminoácidos/química , Animais , Sequência de Bases , Células CHO , Catálise , Domínio Catalítico , Cricetinae , Dimerização , Dipeptidil Peptidase 4/química , Evolução Molecular , Humanos , Insetos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
10.
J Biomol Screen ; 15(4): 388-97, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20228280

RESUMO

Superoxide affects many normal and pathogenic cellular processes, and the detection of superoxide produced by cells is therefore of interest for potential therapeutic applications. To develop a high-throughput cell-based assay for the detection of extracellular superoxide production that could be run in a 384-well or 1536-well format, 2 luminescent reagents, Lucigenin and Diogenes, and one fluorescent reagent, Oxyburst Green BSA, were tested. HL-60 cells, which had been differentiated to a neutrophil-like phenotype with DMSO and frozen in large batches, were used in assays. All 3 superoxide detection reagents performed well statistically in terms of IC(50) reproducibility and met a desired Z' value requirement of >0.4. When tested against a 1408-compound test set at 5 or 10 microM compound concentration, a higher hit rate was obtained with the 2 luminescent reagents compared with that obtained with the fluorescent Oxyburst Green BSA reagent. The Oxyburst Green BSA assay was ultimately chosen for compound profiling and high-throughput screening activities. This 1536 superoxide detection assay using cryopreserved differentiated HL-60 cells represents a shifting paradigm toward the utilization of more therapeutically relevant cells in early drug development activities.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Superóxidos/metabolismo , Citocromos c/metabolismo , Células HL-60 , Humanos , Cinética , Oniocompostos/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA