Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biology (Basel) ; 10(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918726

RESUMO

Microbial communities found in arid environments are commonly represented by biological soil crusts (BSCs) and endolithic assemblages. There is still limited knowledge concerning endoliths and BSCs occurring in the cold mountain desert of Pamir. The aim of the study was to investigate the composition and structure of endolithic bacterial communities in comparison to surrounding BSCs in three subregions of the Eastern Pamir (Tajikistan). The endolithic and BSC communities were studied using culture-independent and culture-dependent techniques. The structure of the endolithic bacterial communities can be characterized as Actinobacteria-Proteobacteria-Bacteroidetes-Chloroflexi-Cyanobacteria, while the BSCs' can be described as Proteobacteria-Actinobacteria-Bacteroidetes-Cyanobacteria assemblages with low representation of other bacteria. The endolithic cyanobacterial communities were characterized by the high percentage of Chroococcidiopsaceae, Nodosilineaceae, Nostocaceae and Thermosynechococcaceae, while in the BSCs were dominated by Nodosilineaceae, Phormidiaceae and Nostocaceae. The analysis of 16S rRNA genes of the cyanobacterial cultures revealed the presence of possibly novel species of Chroococcidiopsis, Gloeocapsopsis and Wilmottia. Despite the niches' specificity, which is related to the influence of microenvironment factors on the composition and structure of endolithic communities, our results illustrate the interrelation between the endoliths and the surrounding BSCs in some regions. The structure of cyanobacterial communities from BSC was the only one to demonstrate some subregional differences.

2.
Materials (Basel) ; 13(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825752

RESUMO

Carbon-based (nano)materials doped with transition metals, nitrogen and other heteroatoms are considered active heterogeneous catalysts in a wide range of chemical processes. Recently they have been scrutinized as artificial enzymes since they can catalyze proton-coupled electron transfer reactions vital for living organisms. Herein, interactions between Gram-positive and Gram-negative bacteria and either metal-free N and/or S doped or metal containing Fe-N-S co-doped porous carbons are studied. The Fe- and N-co-doped porous carbons (Fe-N-C) exhibit enhanced affinity toward bacteria as they show the highest adsorption capacity. Fe-N-C materials also show the strongest influence on the bacteria viability with visible toxic effect. Both types of bacteria studied reacted to the presence of Fe-doped carbons in a similar manner, showing a decrease in dehydrogenases activity in comparison to controls. The N-coordinated iron-doped carbons (Fe-N-C) may exhibit oxidase/peroxidase-like activity and activate O2 dissolved in the solution and/or oxygen-containing species released by the bacteria (e.g., H2O2) to yield highly bactericidal reactive oxygen species. As Fe/N/ and/or S-doped carbon materials efficiently adsorb bacteria exhibiting simultaneously antibacterial properties, they can be applied, inter alia, as microbiological filters with enhanced biofouling resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA