Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO J ; 39(18): e103922, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32812257

RESUMO

Translational readthrough, i.e., elongation of polypeptide chains beyond the stop codon, was initially reported for viral RNA, but later found also on eukaryotic transcripts, resulting in proteome diversification and protein-level modulation. Here, we report that AGO1x, an evolutionarily conserved translational readthrough isoform of Argonaute 1, is generated in highly proliferative breast cancer cells, where it curbs accumulation of double-stranded RNAs (dsRNAs) and consequent induction of interferon responses and apoptosis. In contrast to other mammalian Argonaute protein family members with primarily cytoplasmic functions, AGO1x exhibits nuclear localization in the vicinity of nucleoli. We identify AGO1x interaction with the polyribonucleotide nucleotidyltransferase 1 (PNPT1) and show that the depletion of this protein further augments dsRNA accumulation. Our study thus uncovers a novel function of an Argonaute protein in buffering the endogenous dsRNA-induced interferon responses, different than the canonical function of AGO proteins in the miRNA effector pathway. As AGO1x expression is tightly linked to breast cancer cell proliferation, our study thus suggests a new direction for limiting tumor growth.


Assuntos
Proteínas Argonautas/metabolismo , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Fatores de Iniciação em Eucariotos/metabolismo , Interferons/metabolismo , Proteínas de Neoplasias/metabolismo , RNA de Cadeia Dupla/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Argonautas/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fatores de Iniciação em Eucariotos/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Interferons/genética , Proteínas de Neoplasias/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/genética
2.
BMC Genomics ; 20(1): 100, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704403

RESUMO

BACKGROUND: Along with the reorganization of epigenetic and transcriptional networks, somatic cell reprogramming brings about numerous changes at the level of RNA processing. These include the expression of specific transcript isoforms and 3' untranslated regions. A number of studies have uncovered RNA processing factors that modulate the efficiency of the reprogramming process. However, a comprehensive evaluation of the involvement of RNA processing factors in the reprogramming of somatic mammalian cells is lacking. RESULTS: Here, we used data from a large number of studies carried out in three mammalian species, mouse, chimpanzee and human, to uncover consistent changes in gene expression upon reprogramming of somatic cells. We found that a core set of nine splicing factors have consistent changes across the majority of data sets in all three species. Most striking among these are ESRP1 and ESRP2, which accelerate and enhance the efficiency of somatic cell reprogramming by promoting isoform expression changes associated with mesenchymal-to-epithelial transition. We further identify genes and processes in which splicing changes are observed in both human and mouse. CONCLUSIONS: Our results provide a general resource for gene expression and splicing changes that take place during somatic cell reprogramming. Furthermore, they support the concept that splicing factors with evolutionarily conserved, cell type-specific expression can modulate the efficiency of the process by reinforcing intermediate states resembling the cell types in which these factors are normally expressed.


Assuntos
Reprogramação Celular , Processamento Pós-Transcricional do RNA , Splicing de RNA , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Pan troglodytes , Isoformas de Proteínas , Proteínas de Ligação a RNA/genética
3.
Genome Res ; 23(4): 604-15, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23335364

RESUMO

Most of what is presently known about how miRNAs regulate gene expression comes from studies that characterized the regulatory effect of miRNA binding sites located in the 3' untranslated regions (UTR) of mRNAs. In recent years, there has been increasing evidence that miRNAs also bind in the coding region (CDS), but the implication of these interactions remains obscure because they have a smaller impact on mRNA stability compared with miRNA-target interactions that involve 3' UTRs. Here we show that miRNA-complementary sites that are located in both CDS and 3'-UTRs are under selection pressure and share the same sequence and structure properties. Analyzing recently published data of ribosome-protected fragment profiles upon miRNA transfection from the perspective of the location of miRNA-complementary sites, we find that sites located in the CDS are most potent in inhibiting translation, while sites located in the 3' UTR are more efficient at triggering mRNA degradation. Our study suggests that miRNAs may combine targeting of CDS and 3' UTR to flexibly tune the time scale and magnitude of their post-transcriptional regulatory effects.


Assuntos
MicroRNAs/genética , Fases de Leitura Aberta , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Biologia Computacional , Sequência Conservada , Desenvolvimento Embrionário , Evolução Molecular , Regulação da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Estabilidade de RNA , Seleção Genética
4.
Methods ; 85: 100-107, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25952948

RESUMO

The generation of dynamic models of biological processes critically depends on the determination of precise cellular concentrations of biomolecules. Measurements of system-wide absolute protein levels are particularly valuable information in systems biology. Recently, mass spectrometry based proteomics approaches have been developed to estimate protein concentrations on a proteome-wide scale. However, for very complex proteomes, fractionation steps are required, increasing samples number and instrument analysis time. As a result, the number of full proteomes that can be routinely analyzed is limited. Here we combined absolute quantification strategies with the multiplexing capabilities of isobaric tandem mass tags to determine cellular protein abundances in a high throughput and proteome-wide scale even for highly complex biological systems, such as a whole human cell line. We generated two independent data sets to demonstrate the power of the approach regarding sample throughput, dynamic range, quantitative precision and accuracy as well as proteome coverage in comparison to existing mass spectrometry based strategies.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Marcação por Isótopo/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Células HEK293 , Humanos , Espectrometria de Massas/métodos
5.
Mol Syst Biol ; 9: 711, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24301800

RESUMO

MiRNAs are post-transcriptional regulators that contribute to the establishment and maintenance of gene expression patterns. Although their biogenesis and decay appear to be under complex control, the implications of miRNA expression dynamics for the processes that they regulate are not well understood. We derived a mathematical model of miRNA-mediated gene regulation, inferred its parameters from experimental data sets, and found that the model describes well time-dependent changes in mRNA, protein and ribosome density levels measured upon miRNA transfection and induction. The inferred parameters indicate that the timescale of miRNA-dependent regulation is slower than initially thought. Delays in miRNA loading into Argonaute proteins and the slow decay of proteins relative to mRNAs can explain the typically small changes in protein levels observed upon miRNA transfection. For miRNAs to regulate protein expression on the timescale of a day, as miRNAs involved in cell-cycle regulation do, accelerated miRNA turnover is necessary.


Assuntos
Regulação da Expressão Gênica , MicroRNAs , Modelos Genéticos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Simulação por Computador , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Cinética , MicroRNAs/genética , MicroRNAs/fisiologia , Reprodutibilidade dos Testes
6.
Curr Opin Pharmacol ; 53: 35-44, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32416533

RESUMO

Glucocorticoids (GCs) are widely used immunomodulators. They regulate gene expression by binding and activating the Glucocorticoid Receptor (GR), but underlying transcriptional mechanisms remain enigmatic. This review summarizes recent findings identifyingspecific GR-bound DNA sequences whose configuration may affect transcriptional output. Additional factors affecting GR's anti-inflammatory actions, including different chromatin states such as DNAse hypersensitive regions and histone marks will be discussed, together with the relevant transcriptional co-regulators and promoter/enhancer features. Furthermore, the involvement of non-coding RNAs such as lncRNAs, miRNAs and eRNAs adds another level of regulation to the GR's transcriptional activity. Characterizing and understanding these multiple mechanisms will be crucial for developing more targeted immunomodulatory therapies with reduced adverse effects such as obesity, diabetes and osteoporosis.


Assuntos
Anti-Inflamatórios/farmacologia , Glucocorticoides/farmacologia , Animais , Genômica , Humanos , RNA não Traduzido , Receptores de Glucocorticoides/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA