Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nucleic Acids Res ; 50(15): e89, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35641102

RESUMO

RNA polymerase II (RNAPII) is emerging as an important factor in DNA damage responses, but how it responds to genotoxic stress is not fully understood. We have developed a rapid and sensitive flow cytometry method to study chromatin binding of RNAPII in individual human cells through the cell cycle. Indicating enhanced transcription initiation at early timepoints, levels of RNAPII were increased at 15-30min after UV-induced DNA damage. This was particularly evident for the S5 phosphorylated form of RNAPII (pRNAPII S5), which is typically associated with promoter proximal pausing. Furthermore, degradation of pRNAPII S5 frequently occurs, as its levels on chromatin were strongly enhanced by the proteasome inhibitor MG132 with and without UV. Remarkably, inhibiting pause release with 5,6-dichloro-1-beta-ribo-furanosyl benzimidazole (DRB) further promoted UV-induced degradation of pRNAPII S5, suggesting enhanced initiation may lead to a phenomenon of 'promoter proximal crowding' resulting in premature termination via degradation of RNAPII. Moreover, pRNAPII S2 levels on chromatin were more stable in S phase of the cell cycle 2h after UV, indicating cell cycle specific effects. Altogether our results demonstrate a useful new method and suggest that degradation of promoter proximal RNAPII plays an unanticipated large role both during normal transcription and after UV.


Assuntos
Cromatina , Citometria de Fluxo/métodos , RNA Polimerase II , Cromatina/genética , Dano ao DNA , Humanos , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Análise de Célula Única , Transcrição Gênica
2.
Nucleic Acids Res ; 47(4): 1797-1813, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30541148

RESUMO

Ataxia telangiectasia mutated and Rad3-related (ATR) kinase is a key factor activated by DNA damage and replication stress. An alternative pathway for ATR activation has been proposed to occur via stalled RNA polymerase II (RNAPII). However, how RNAPII might signal to activate ATR remains unknown. Here, we show that ATR signaling is increased after depletion of the RNAPII phosphatase PNUTS-PP1, which dephosphorylates RNAPII in its carboxy-terminal domain (CTD). High ATR signaling was observed in the absence and presence of ionizing radiation, replication stress and even in G1, but did not correlate with DNA damage or RPA chromatin loading. R-loops were enhanced, but overexpression of EGFP-RNaseH1 only slightly reduced ATR signaling after PNUTS depletion. However, CDC73, which interacted with RNAPII in a phospho-CTD dependent manner, was required for the high ATR signaling, R-loop formation and for activation of the endogenous G2 checkpoint after depletion of PNUTS. In addition, ATR, RNAPII and CDC73 co-immunoprecipitated. Our results suggest a novel pathway involving RNAPII, CDC73 and PNUTS-PP1 in ATR signaling and give new insight into the diverse functions of ATR.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , RNA Polimerase II/genética , Estresse Fisiológico/genética , Proteínas Supressoras de Tumor/genética , Animais , Cromatina/genética , Dano ao DNA/efeitos da radiação , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Proteínas Nucleares/genética , Fosforilação/efeitos da radiação , Proteínas de Ligação a RNA/genética , Radiação Ionizante , Receptores de Neuropeptídeo Y/genética , Ribonuclease H/genética , Transdução de Sinais/efeitos da radiação , Estresse Fisiológico/efeitos da radiação
3.
Int J Cancer ; 135(9): 2085-95, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24658971

RESUMO

Radiotherapy (RT) is a central treatment modality for breast cancer patients. The purpose of our study was to investigate the DNA methylation changes in tumors following RT, and to identify epigenetic markers predicting treatment outcome. Paired biopsies from patients with inoperable breast cancer were collected both before irradiation (n = 20) and after receiving 10-24 Gray (Gy) (n = 19). DNA methylation analysis was performed by using Illumina Infinium 27K arrays. Fourteen genes were selected for technical validation by pyrosequencing. Eighty-two differentially methylated genes were identified in irradiated (n = 11) versus nonirradiated (n = 19) samples (false discovery rate, FDR = 1.1%). Methylation levels in pathways belonging to the immune system were most altered after RT. Based on methylation levels before irradiation, a panel of five genes (H2AFY, CTSA, LTC4S, IL5RA and RB1) were significantly associated with clinical response (p = 0.041). Furthermore, the degree of methylation changes for 2,516 probes correlated with the given radiation dose. Within the 2,516 probes, an enrichment for pathways involved in cellular immune response, proliferation and apoptosis was identified (FDR < 5%). Here, we observed clear differences in methylation levels induced by radiation, some associated with response to treatment. Our study adds knowledge on the molecular mechanisms behind radiation response.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Mama/metabolismo , Metilação de DNA , Epigenômica , Neoplasias da Mama/imunologia , Feminino , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Células Tumorais Cultivadas
4.
Nucleic Acids Res ; 40(2): 477-86, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21937510

RESUMO

Mechanisms that preserve genome integrity are highly important during the normal life cycle of human cells. Loss of genome protective mechanisms can lead to the development of diseases such as cancer. Checkpoint kinases function in the cellular surveillance pathways that help cells to cope with DNA damage. Importantly, the checkpoint kinases ATR, CHK1 and WEE1 are not only activated in response to exogenous DNA damaging agents, but are active during normal S phase progression. Here, we review recent evidence that these checkpoint kinases are critical to avoid deleterious DNA breakage during DNA replication in normal, unperturbed cell cycle. Possible mechanisms how loss of these checkpoint kinases may cause DNA damage in S phase are discussed. We propose that the majority of DNA damage is induced as a consequence of deregulated CDK activity that forces unscheduled initiation of DNA replication. This could generate structures that are cleaved by DNA endonucleases leading to the formation of DNA double-strand breaks. Finally, we discuss how these S phase effects may impact on our understanding of cancer development following disruption of these checkpoint kinases, as well as on the potential of these kinases as targets for cancer treatment.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Transformação Celular Neoplásica/metabolismo , Quinase 1 do Ponto de Checagem , Dano ao DNA , Genoma , Humanos , Camundongos
5.
Cells ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920686

RESUMO

The use of charged particle radiotherapy is currently increasing, but combination therapy with DNA repair inhibitors remains to be exploited in the clinic. The high-linear energy transfer (LET) radiation delivered by charged particles causes clustered DNA damage, which is particularly effective in destroying cancer cells. Whether the DNA damage response to this type of damage is different from that elicited in response to low-LET radiation, and if and how it can be targeted to increase treatment efficacy, is not fully understood. Although several preclinical studies have reported radiosensitizing effects when proton or carbon ion irradiation is combined with inhibitors of, e.g., PARP, ATR, ATM, or DNA-PKcs, further exploration is required to determine the most effective treatments. Here, we examine what is known about repair pathway choice in response to high- versus low-LET irradiation, and we discuss the effects of inhibitors of these pathways when combined with protons and carbon ions. Additionally, we explore the potential effects of DNA repair inhibitors on antitumor immune signaling upon proton and carbon ion irradiation. Due to the reduced effect on healthy tissue and better immune preservation, particle therapy may be particularly well suited for combination with DNA repair inhibitors.


Assuntos
Dano ao DNA , Reparo do DNA , Radioterapia com Íons Pesados , Terapia com Prótons , Humanos , Reparo do DNA/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Animais , Transferência Linear de Energia
6.
EMBO Rep ; 12(7): 705-12, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21637299

RESUMO

To identify key connections between DNA-damage repair and checkpoint pathways, we performed RNA interference screens for regulators of the ionizing radiation-induced G2 checkpoint, and we identified the breast cancer gene BRCA2. The checkpoint was also abrogated following depletion of PALB2, an interaction partner of BRCA2. BRCA2 and PALB2 depletion led to premature checkpoint abrogation and earlier activation of the AURORA A-PLK1 checkpoint-recovery pathway. These results indicate that the breast cancer tumour suppressors and homologous recombination repair proteins BRCA2 and PALB2 are main regulators of G2 checkpoint maintenance following DNA-damage.


Assuntos
Proteína BRCA2/metabolismo , Fase G2/fisiologia , Ensaios de Triagem em Larga Escala , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína BRCA2/genética , Linhagem Celular , Dano ao DNA , Proteína do Grupo de Complementação N da Anemia de Fanconi , Fase G2/genética , Biblioteca Gênica , Células HCT116 , Células HeLa , Humanos , Proteínas Nucleares/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Recombinação Genética , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética
7.
Bio Protoc ; 13(8): e4659, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37113330

RESUMO

RNA polymerase II (RNAPII) transcribes DNA into mRNA and thereby plays a critical role in cellular protein production. In addition, RNAPII plays a central role in DNA damage responses. Measurements of RNAPII on chromatin may thus give insight into several essential processes in eukaryotic cells. During transcription, the C-terminal domain of RNAPII becomes post-translationally modified, and phosphorylation on serine 5 and serine 2 can be used as markers for the promoter proximal and productively elongating forms of RNAPII, respectively. Here, we provide a detailed protocol for the detection of chromatin-bound RNAPII and its serine 5- and serine 2-phosphorylated forms in individual human cells through the cell cycle. We have recently shown that this method can be used to study the effects of ultraviolet DNA damage on RNAPII chromatin binding and that it can even be used to reveal new knowledge about the transcription cycle itself. Other commonly used methods to study RNAPII chromatin binding include chromatin immunoprecipitation followed by sequencing or chromatin fractionation followed by western blotting. However, such methods are frequently based on lysates made from a large number of cells, which may mask population heterogeneity, e.g., due to cell cycle phase. With strengths such as single-cell analysis, speed of use, and accurate quantitative readouts, we envision that our flow cytometry method can be widely used as a complementary approach to sequencing-based methods to study effects of different stimuli and inhibitors on RNAPII-mediated transcription. Graphical overview.

8.
Front Immunol ; 14: 1138920, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346039

RESUMO

Introduction: Inhibitors of the ATR kinase act as radiosensitizers through abrogating the G2 checkpoint and reducing DNA repair. Recent studies suggest that ATR inhibitors can also increase radiation-induced antitumor immunity, but the underlying immunomodulating mechanisms remain poorly understood. Moreover, it is poorly known how such immune effects relate to different death pathways such as caspase-dependent apoptosis. Here we address whether ATR inhibition in combination with irradiation may increase the presentation of hallmark factors of immunogenic cell death (ICD), and to what extent caspase activation regulates this response. Methods: Human lung cancer and osteosarcoma cell lines (SW900, H1975, H460, U2OS) were treated with X-rays and ATR inhibitors (VE822; AZD6738) in the absence and presence of a pan-caspase inhibitor. The ICD hallmarks HMGB1 release, ATP secretion and calreticulin surface-presentation were assessed by immunoblotting of growth medium, the CellTiter-Glo assay and an optimized live-cell flow cytometry assay, respectively. To obtain accurate measurement of small differences in the calreticulin signal by flow cytometry, we included normalization to a barcoded control sample. Results: Extracellular release of HMGB1 was increased in all the cell lines at 72 hours after the combined treatment with radiation and ATR inhibitors, relative to mock treatment or cells treated with radiation alone. The HMGB1 release correlated largely - but not strictly - with loss of plasma membrane integrity, and was suppressed by addition of the caspase inhibitor. However, one cell line showed HMGB1 release despite caspase inhibition, and in this cell line caspase inhibition induced pMLKL, a marker for necroptosis. ATP secretion occurred already at 48 hours after the co-treatment and did clearly not correlate with loss of plasma membrane integrity. Addition of pan-caspase inhibition further increased the ATP secretion. Surface-presentation of calreticulin was increased at 24-72 hours after irradiation, but not further increased by either ATR or caspase inhibition. Conclusion: These results show that ATR inhibition can increase the presentation of two out of three ICD hallmark factors from irradiated human cancer cells. Moreover, caspase activation distinctly affects each of the hallmark factors, and therefore likely plays a dual role in tumor immunogenicity by promoting both immunostimulatory and -suppressive effects.


Assuntos
Caspases , Proteína HMGB1 , Humanos , Caspases/metabolismo , Proteína HMGB1/metabolismo , Calreticulina/metabolismo , Inibidores de Caspase , Morte Celular Imunogênica , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases , Trifosfato de Adenosina , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
9.
Int J Radiat Biol ; 99(6): 941-950, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-33877959

RESUMO

PURPOSE: Radiation-induced activation of cell cycle checkpoints have been of long-standing interest. The WEE1, CHK1 and ATR kinases are key factors in cell cycle checkpoint regulation and are essential for the S and G2 checkpoints. Here, we review the rationale for why inhibitors of WEE1, CHK1 and ATR could be beneficial in combination with radiation. CONCLUSIONS: Combined treatment with radiation and inhibitors of these kinases results in checkpoint abrogation and subsequent mitotic catastrophe. This might selectively radiosensitize tumor cells, as they often lack the p53-dependent G1 checkpoint and therefore rely more on the G2 checkpoint to repair DNA damage. Further affecting the repair of radiation damage, inhibition of WEE1, CHK1 or ATR also specifically suppresses the homologous recombination repair pathway. Moreover, inhibition of these kinases can induce massive replication stress during S phase of the cell cycle, likely contributing to eliminate radioresistant S phase cells. Intriguingly, recent findings suggest that cell cycle checkpoint inhibitors in combination with radiation can also enhance anti-tumor immune effects. Altogether, the expanding knowledge about the functional roles of WEE1, CHK1 and ATR inhibitors support that they are promising candidates for use in combination with radiation treatment.


Assuntos
Proteínas Tirosina Quinases , Radioterapia (Especialidade) , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Nucleares/metabolismo , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Pontos de Checagem da Fase G2 do Ciclo Celular , Linhagem Celular Tumoral , Proteínas Mutadas de Ataxia Telangiectasia/genética
10.
Nat Cell Biol ; 7(2): 195-201, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15665856

RESUMO

The essential checkpoint kinase Chk1 is required for cell-cycle delays after DNA damage or blocked DNA replication. However, it is unclear whether Chk1 is involved in the repair of damaged DNA. Here we establish that Chk1 is a key regulator of genome maintenance by the homologous recombination repair (HRR) system. Abrogation of Chk1 function with small interfering RNA or chemical antagonists inhibits HRR, leading to persistent unrepaired DNA double-strand breaks (DSBs) and cell death after replication inhibition with hydroxyurea or DNA-damage caused by camptothecin. After hydroxyurea treatment, the essential recombination repair protein RAD51 is recruited to DNA repair foci performing a vital role in correct HRR. We demonstrate that Chk1 interacts with RAD51, and that RAD51 is phosphorylated on Thr 309 in a Chk1-dependent manner. Consistent with a functional interplay between Chk1 and RAD51, Chk1-depleted cells failed to form RAD51 nuclear foci after exposure to hydroxyurea, and cells expressing a phosphorylation-deficient mutant RAD51(T309A) were hypersensitive to hydroxyurea. These results highlight a crucial role for the Chk1 signalling pathway in protecting cells against lethal DNA lesions through regulation of HRR.


Assuntos
Reparo do DNA , Proteínas Quinases/fisiologia , Recombinação Genética , Animais , Camptotecina/farmacologia , Quinase 1 do Ponto de Checagem , Cricetinae , DNA , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Hidroxiureia/farmacologia , Rad51 Recombinase , Transdução de Sinais
11.
EMBO Rep ; 11(11): 868-75, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20890310

RESUMO

The function of protein phosphatase 1 nuclear-targeting subunit (PNUTS)--one of the most abundant nuclear-targeting subunits of protein phosphatase 1 (PP1c)--remains largely uncharacterized. We show that PNUTS depletion by small interfering RNA activates a G2 checkpoint in unperturbed cells and prolongs G2 checkpoint and Chk1 activation after ionizing-radiation-induced DNA damage. Overexpression of PNUTS-enhanced green fluorescent protein (EGFP)--which is rapidly and transiently recruited at DNA damage sites--inhibits G2 arrest. Finally, γH2AX, p53-binding protein 1, replication protein A and Rad51 foci are present for a prolonged period and clonogenic survival is decreased in PNUTS-depleted cells after ionizing radiation treatment. We identify the PP1c regulatory subunit PNUTS as a new and integral component of the DNA damage response involved in DNA repair.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Núcleo Celular/enzimologia , Núcleo Celular/efeitos da radiação , Proteínas de Ligação a DNA/deficiência , Recuperação de Fluorescência Após Fotodegradação , Fase G2/efeitos da radiação , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Mitose/efeitos da radiação , Proteínas Nucleares/deficiência , RNA Interferente Pequeno/metabolismo , Radiação Ionizante , Proteínas Recombinantes de Fusão/metabolismo
12.
Cancer Cell ; 3(3): 247-58, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12676583

RESUMO

Chk1 kinase coordinates cell cycle progression and preserves genome integrity. Here, we show that chemical or genetic ablation of human Chk1 triggered supraphysiological accumulation of the S phase-promoting Cdc25A phosphatase, prevented ionizing radiation (IR)-induced degradation of Cdc25A, and caused radioresistant DNA synthesis (RDS). The basal turnover of Cdc25A operating in unperturbed S phase required Chk1-dependent phosphorylation of serines 123, 178, 278, and 292. IR-induced acceleration of Cdc25A proteolysis correlated with increased phosphate incorporation into these residues generated by a combined action of Chk1 and Chk2 kinases. Finally, phosphorylation of Chk1 by ATM was required to fully accelerate the IR-induced degradation of Cdc25A. Our results provide evidence that the mammalian S phase checkpoint functions via amplification of physiologically operating, Chk1-dependent mechanisms.


Assuntos
Ciclo Celular/fisiologia , Proteínas Quinases/metabolismo , Fosfatases cdc25/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Replicação do DNA/efeitos da radiação , Proteínas de Ligação a DNA , Ativação Enzimática , Células HeLa , Humanos , Cinética , Modelos Biológicos , Fosforilação , Proteínas Serina-Treonina Quinases/fisiologia , Radiação Ionizante , Fase S/efeitos da radiação , Serina/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor , Fosfatases cdc25/efeitos da radiação
13.
Front Oncol ; 12: 981332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387237

RESUMO

Recent studies suggest that inhibition of the ATR kinase can potentiate radiation-induced antitumor immune responses, but the extent and mechanisms of such responses in human cancers remain scarcely understood. We aimed to assess whether the ATR inhibitors VE822 and AZD6738, by abrogating the G2 checkpoint, increase cGAS-mediated type I IFN response after irradiation in human lung cancer and osteosarcoma cell lines. Supporting that the checkpoint may prevent IFN induction, radiation-induced IFN signaling declined when the G2 checkpoint arrest was prolonged at high radiation doses. G2 checkpoint abrogation after co-treatment with radiation and ATR inhibitors was accompanied by increased radiation-induced IFN signaling in four out of five cell lines tested. Consistent with the hypothesis that the cytosolic DNA sensor cGAS may detect DNA from ruptured micronuclei after G2 checkpoint abrogation, cGAS co-localized with micronuclei, and depletion of cGAS or STING abolished the IFN responses. Contrastingly, one lung cancer cell line showed no increase in IFN signaling despite irradiation and G2 checkpoint abrogation. This cell line showed a higher level of the exonuclease TREX1 than the other cell lines, but TREX1 depletion did not enhance IFN signaling. Rather, addition of a pan-caspase inhibitor restored the IFN response in this cell line and also increased the responses in the other cell lines. These results show that treatment-induced caspase activation can suppress the IFN response after co-treatment with radiation and ATR inhibitors. Caspase activation thus warrants further consideration as a possible predictive marker for lack of IFN signaling.

14.
Nat Cell Biol ; 6(9): 884-91, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15311285

RESUMO

Entry into mitosis occurs after activation of Cdk1, resulting in chromosome condensation in the nucleus and centrosome separation, as well as increased microtubule nucleation activity in the cytoplasm. The active cyclin-B1-Cdk1 complex first appears at the centrosome, suggesting that the centrosome may facilitate the activation of mitotic regulators required for the commitment of cells to mitosis. However, the signalling pathways involved in controlling the initial activation of Cdk1 at the centrosome remain largely unknown. Here, we show that human Chk1 kinase localizes to interphase, but not mitotic, centrosomes. Chemical inhibition of Chk1 resulted in premature centrosome separation and activation of centrosome-associated Cdk1. Forced immobilization of kinase-inactive Chk1 to centrosomes also resulted in premature Cdk1 activation. Conversely, under such conditions wild-type Chk1 impaired activation of centrosome-associated Cdk1, thereby resulting in DNA endoreplication and centrosome amplification. Activation of centrosomal Cdk1 in late prophase seemed to be mediated by cytoplasmic Cdc25B, whose activity is controlled by centrosome-associated Chk1. These results suggest that centrosome-associated Chk1 shields centrosomal Cdk1 from unscheduled activation by cytoplasmic Cdc25B, thereby contributing to proper timing of the initial steps of cell division, including mitotic spindle formation.


Assuntos
Centrossomo/enzimologia , Ciclinas/metabolismo , Proteínas Quinases/fisiologia , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/fisiologia , Proteínas de Ciclo Celular/fisiologia , Divisão Celular , Linhagem Celular , Quinase 1 do Ponto de Checagem , Ciclina B/metabolismo , Ciclina B1 , Ativação Enzimática , Humanos , Interfase , Microscopia Confocal , Ligação Proteica , Proteínas Quinases/metabolismo , Fuso Acromático , Fosfatases cdc25/fisiologia
15.
Mol Cell Oncol ; 8(3): 1910008, 2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-34027044

RESUMO

Conflicts between transcription and replication are a major source of replication stress. Our recent findings show that proper dephosphorylation of Serine 5 in the carboxy-terminal domain (CTD) of DNA-directed RNA polymerase II subunit RPB1 is needed to prevent such conflicts in human cells.

16.
Cancers (Basel) ; 13(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34359691

RESUMO

Inhibitors of WEE1 and ATR kinases are considered promising for cancer treatment, either as monotherapy or in combination with chemo- or radiotherapy. Here, we addressed whether simultaneous inhibition of WEE1 and ATR might be advantageous. Effects of the WEE1 inhibitor MK1775 and ATR inhibitor VE822 were investigated in U2OS osteosarcoma cells and in four lung cancer cell lines, H460, A549, H1975, and SW900, with different sensitivities to the WEE1 inhibitor. Despite the differences in cytotoxic effects, the WEE1 inhibitor reduced the inhibitory phosphorylation of CDK, leading to increased CDK activity accompanied by ATR activation in all cell lines. However, combining ATR inhibition with WEE1 inhibition could not fully compensate for cell resistance to the WEE1 inhibitor and reduced cell viability to a variable extent. The decreased cell viability upon the combined treatment correlated with a synergistic induction of DNA damage in S-phase in U2OS cells but not in the lung cancer cells. Moreover, less synergy was found between ATR and WEE1 inhibitors upon co-treatment with radiation, suggesting that single inhibitors may be preferable together with radiotherapy. Altogether, our results support that combining WEE1 and ATR inhibitors may be beneficial for cancer treatment in some cases, but also highlight that the effects vary between cancer cell lines.

17.
Cell Rep ; 33(9): 108469, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264625

RESUMO

Transcription-replication (T-R) conflicts cause replication stress and loss of genome integrity. However, the transcription-related processes that restrain such conflicts are poorly understood. Here, we demonstrate that the RNA polymerase II (RNAPII) C-terminal domain (CTD) phosphatase protein phosphatase 1 (PP1) nuclear targeting subunit (PNUTS)-PP1 inhibits replication stress. Depletion of PNUTS causes lower EdU uptake, S phase accumulation, and slower replication fork rates. In addition, the PNUTS binding partner WDR82 also promotes RNAPII-CTD dephosphorylation and suppresses replication stress. RNAPII has a longer residence time on chromatin after depletion of PNUTS or WDR82. Furthermore, the RNAPII residence time is greatly enhanced by proteasome inhibition in control cells but less so in PNUTS- or WDR82-depleted cells, indicating that PNUTS and WDR82 promote degradation of RNAPII on chromatin. Notably, reduced replication is dependent on transcription and the phospho-CTD binding protein CDC73 after depletion of PNUTS/WDR82. Altogether, our results suggest that RNAPII-CTD dephosphorylation is required for the continuous turnover of RNAPII on chromatin, thereby preventing T-R conflicts.


Assuntos
Cromatina/efeitos dos fármacos , Proteínas Cromossômicas não Histona/uso terapêutico , RNA Polimerase II/metabolismo , Proteínas Cromossômicas não Histona/farmacologia , Humanos , Transfecção
18.
Cell Cycle ; 18(8): 834-847, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30943845

RESUMO

The Wee1 inhibitor MK1775 (AZD1775) is currently being tested in clinical trials for cancer treatment. Here, we show that the p53 target and CDK inhibitor p21 protects against MK1775-induced DNA damage during S-phase. Cancer and normal cells deficient for p21 (HCT116 p21-/-, RPE p21-/-, and U2OS transfected with p21 siRNA) showed higher induction of the DNA damage marker γH2AX in S-phase in response to MK1775 compared to the respective parental cells. Furthermore, upon MK1775 treatment the levels of phospho-DNA PKcs S2056 and phospho-RPA S4/S8 were higher in the p21 deficient cells, consistent with increased DNA breakage. Cell cycle analysis revealed that these effects were due to an S-phase function of p21, but MK1775-induced S-phase CDK activity was not altered as measured by CDK-dependent phosphorylations. In the p21 deficient cancer cells MK1775-induced cell death was also increased. Moreover, p21 deficiency sensitized to combined treatment of MK1775 and the CHK1-inhibitor AZD6772, and to the combination of MK1775 with ionizing radiation. These results show that p21 protects cancer cells against Wee1 inhibition and suggest that S-phase functions of p21 contribute to mediate such protection. As p21 can be epigenetically downregulated in human cancer, we propose that p21 levels may be considered during future applications of Wee1 inhibitors.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/efeitos dos fármacos , Neoplasias/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinonas/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/genética , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Dano ao DNA/genética , Células HCT116 , Humanos , Neoplasias/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Pirazóis/uso terapêutico , Pirimidinonas/uso terapêutico , RNA Interferente Pequeno/genética , Transfecção
19.
Front Oncol ; 9: 1301, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850205

RESUMO

The CD37 targeting radioimmunoconjugate 177Lu-lilotomab satetraxetan (Betalutin) is currently being evaluated in a clinical phase 2b trial for patients with follicular lymphoma (FL) and in a phase 1 trial for patients with diffuse large B-cell lymphoma (DLBCL). Herein we have investigated the effect of 177Lu-lilotomab satetraxetan in seven activated B-cell like (ABC) DLBCL cell lines. Although the radioimmunoconjugate showed anti-tumor activity, primary resistance was observed in a subset of cell lines. Thus, we set out to identify drugs able to overcome the resistance to 177Lu-lilotomab satetraxetan in two resistant ABC-DLBCL cell lines. We performed a viability-based screen combining 177Lu-lilotomab satetraxetan with the 384-compound Cambridge Cancer Compound Library. Drug combinations were scored using Bliss and Chou-Talalay algorithms. We identified and characterized the dual-specific CDK1/2 and AURA/B kinase inhibitor JNJ-7706621 as compound able to revert the resistance to RIT, alongside topoisomerase and histone deacetylases (HDAC) inhibitors.

20.
Mol Cell Biol ; 25(9): 3553-62, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15831461

RESUMO

Human checkpoint kinase 1 (Chk1) is an essential kinase required to preserve genome stability. Here, we show that Chk1 inhibition by two distinct drugs, UCN-01 and CEP-3891, or by Chk1 small interfering RNA (siRNA) leads to phosphorylation of ATR targets. Chk1-inhibition triggered rapid, pan-nuclear phosphorylation of histone H2AX, p53, Smc1, replication protein A, and Chk1 itself in human S-phase cells. These phosphorylations were inhibited by ATR siRNA and caffeine, but they occurred independently of ATM. Chk1 inhibition also caused an increased initiation of DNA replication, which was accompanied by increased amounts of nonextractable RPA protein, formation of single-stranded DNA, and induction of DNA strand breaks. Moreover, these responses were prevented by siRNA-mediated downregulation of Cdk2 or the replication initiation protein Cdc45, or by addition of the CDK inhibitor roscovitine. We propose that Chk1 is required during normal S phase to avoid aberrantly increased initiation of DNA replication, thereby protecting against DNA breakage. These results may help explain why Chk1 is an essential kinase and should be taken into account when drugs to inhibit this kinase are considered for use in cancer treatment.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Dano ao DNA/fisiologia , Replicação do DNA/fisiologia , Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/fisiologia , Estaurosporina/análogos & derivados , Proteínas Mutadas de Ataxia Telangiectasia , Cafeína/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA/efeitos dos fármacos , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Humanos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/genética , Proteínas Quinases/fisiologia , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Purinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteína de Replicação A , Roscovitina , Estaurosporina/farmacologia , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA