Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35950913

RESUMO

Profilin 4 (Pfn4) is expressed during spermiogenesis and localizes to the acrosome-acroplaxome-manchette complex. Here, we generated PFN4-deficient mice, with sperm displaying severe impairment in manchette formation. Interestingly, HOOK1 staining suggests that the perinuclear ring is established; however, ARL3 staining is disrupted, suggesting that lack of PFN4 does not interfere with the formation of the perinuclear ring and initial localization of HOOK1, but impedes microtubular organization of the manchette. Furthermore, amorphous head shape and flagellar defects were detected, resulting in reduced sperm motility. Disrupted cis- and trans-Golgi networks and aberrant production of proacrosomal vesicles caused impaired acrosome biogenesis. Proteomic analysis showed that the proteins ARF3, SPECC1L and FKBP1, which are involved in Golgi membrane trafficking and PI3K/AKT pathway, are more abundant in Pfn4-/- testes. Levels of PI3K, AKT and mTOR were elevated, whereas AMPK level was reduced, consistent with inhibition of autophagy. This seems to result in blockage of autophagic flux, which could explain the failure in acrosome formation. In vitro fertilization demonstrated that PFN4-deficient sperm is capable of fertilizing zona-free oocytes, suggesting a potential treatment for PFN4-related human infertility.


Assuntos
Acrossomo , Profilinas , Espermátides , Espermatogênese , Acrossomo/metabolismo , Animais , Masculino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Profilinas/genética , Profilinas/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sêmen , Motilidade dos Espermatozoides , Espermátides/metabolismo , Espermatogênese/genética , Espermatozoides
2.
Mol Ther ; 31(10): 2962-2974, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37644722

RESUMO

A deficiency of human arylsulfatase A (hASA) causes metachromatic leukodystrophy (MLD), a lysosomal storage disease characterized by sulfatide accumulation and central nervous system (CNS) demyelination. Efficacy of enzyme replacement therapy (ERT) is increased by genetic engineering of hASA to elevate its activity and transfer across the blood-brain barrier (BBB), respectively. To further improve the enzyme's bioavailability in the CNS, we mutated a cathepsin cleavage hot spot and obtained hASAs with substantially increased half-lives. We then combined the superstabilizing exchange E424A with the activity-promoting triple substitution M202V/T286L/R291N and the ApoEII-tag for BBB transfer in a trimodal modified neoenzyme called SuPerTurbo-ASA. Compared with wild-type hASA, half-life, activity, and M6P-independent uptake were increased more than 7-fold, about 3-fold, and more than 100-fold, respectively. ERT of an MLD-mouse model with immune tolerance to wild-type hASA did not induce antibody formation, indicating absence of novel epitopes. Compared with wild-type hASA, SuPerTurbo-ASA was 8- and 12-fold more efficient in diminishing sulfatide storage of brain and spinal cord. In both tissues, storage was reduced by ∼60%, roughly doubling clearance achieved with a 65-fold higher cumulative dose of wild-type hASA previously. Due to its enhanced therapeutic potential, SuPerTurbo-ASA might be a decisive advancement for ERT and gene therapy of MLD.


Assuntos
Leucodistrofia Metacromática , Doenças por Armazenamento dos Lisossomos , Camundongos , Animais , Humanos , Leucodistrofia Metacromática/terapia , Leucodistrofia Metacromática/tratamento farmacológico , Cerebrosídeo Sulfatase/genética , Cerebrosídeo Sulfatase/metabolismo , Sulfoglicoesfingolipídeos/uso terapêutico , Encéfalo/metabolismo , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia
3.
J Biol Chem ; 298(10): 102494, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36115461

RESUMO

Chaperones of the Hsp100/Clp family represent major components of protein homeostasis, conferring maintenance of protein activity under stress. The ClpB-type members of the family, present in bacteria, fungi, and plants, are able to resolubilize aggregated proteins. The mitochondrial member of the ClpB family in Saccharomyces cerevisiae is Hsp78. Although Hsp78 has been shown to contribute to proteostasis in elevated temperatures, the biochemical mechanisms underlying this mitochondria-specific thermotolerance are still largely unclear. To identify endogenous chaperone substrate proteins, here, we generated an Hsp78-ATPase mutant with stabilized substrate-binding behavior. We used two stable isotope labeling-based quantitative mass spectrometry approaches to analyze the role of Hsp78 during heat stress-induced mitochondrial protein aggregation and disaggregation on a proteomic level. We first identified the endogenous substrate spectrum of the Hsp78 chaperone, comprising a wide variety of proteins related to metabolic functions including energy production and protein synthesis, as well as other chaperones, indicating its crucial functions in mitochondrial stress resistance. We then compared these interaction data with aggregation and disaggregation processes in mitochondria under heat stress, which revealed specific aggregation-prone protein populations and demonstrated the direct quantitative impact of Hsp78 on stress-dependent protein solubility under different conditions. We conclude that Hsp78, together with its cofactors, represents a recovery system that protects major mitochondrial metabolic functions during heat stress as well as restores protein biogenesis capacity after the return to normal conditions.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Agregados Proteicos , Proteoma/metabolismo , Proteômica , Saccharomyces cerevisiae/metabolismo , Chaperonas Moleculares/metabolismo , Mitocôndrias/metabolismo , Resposta ao Choque Térmico , Proteínas de Choque Térmico HSP70/metabolismo
4.
Biochem J ; 479(9): 953-972, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35419597

RESUMO

Chromatin remodelling in spermatids is an essential step in spermiogenesis and involves the exchange of most histones by protamines, which drives chromatin condensation in late spermatids. The gene Rimklb encodes a citrylglutamate synthase highly expressed in testes of vertebrates and the increase of its reaction product, ß-citrylglutamate, correlates in time with the appearance of spermatids. Here we show that deficiency in a functional Rimklb gene leads to male subfertility, which could be partially rescued by in vitro fertilization. Rimklb-deficient mice are impaired in a late step of spermiogenesis and produce spermatozoa with abnormally shaped heads and nuclei. Sperm chromatin in Rimklb-deficient mice was less condensed and showed impaired histone to protamine exchange and retained transition protein 2. These observations suggest that citrylglutamate synthase, probably via its reaction product ß-citrylglutamate, is essential for efficient chromatin remodelling during spermiogenesis and may be a possible candidate gene for male subfertility or infertility in humans.


Assuntos
Infertilidade Masculina , Espermátides , Animais , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona , Histonas/genética , Histonas/metabolismo , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Protaminas/genética , Protaminas/metabolismo , Espermátides/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo
5.
J Biol Chem ; 297(4): 101134, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461102

RESUMO

The mitochondrial matrix protease LONP1 is an essential part of the organellar protein quality control system. LONP1 has been shown to be involved in respiration control and apoptosis. Furthermore, a reduction in LONP1 level correlates with aging. Up to now, the effects of a LONP1 defect were mostly studied by utilizing transient, siRNA-mediated knockdown approaches. We generated a new cellular model system for studying the impact of LONP1 on mitochondrial protein homeostasis by a CRISPR/Cas-mediated genetic knockdown (gKD). These cells showed a stable reduction of LONP1 along with a mild phenotype characterized by absent morphological differences and only small negative effects on mitochondrial functions under normal culture conditions. To assess the consequences of a permanent LONP1 depletion on the mitochondrial proteome, we analyzed the alterations of protein levels by quantitative mass spectrometry, demonstrating small adaptive changes, in particular with respect to mitochondrial protein biogenesis. In an additional proteomic analysis, we determined the temperature-dependent aggregation behavior of mitochondrial proteins and its dependence on a reduction of LONP1 activity, demonstrating the important role of the protease for mitochondrial protein homeostasis in mammalian cells. We identified a significant number of mitochondrial proteins that are affected by a reduced LONP1 activity especially with respect to their stress-induced solubility. Taken together, our results suggest a very good applicability of the LONP1 gKD cell line as a model system for human aging processes.


Assuntos
Proteases Dependentes de ATP/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Agregados Proteicos , Proteoma/metabolismo , Proteômica , Proteases Dependentes de ATP/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteoma/genética
6.
J Biol Chem ; 297(3): 101064, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34375644

RESUMO

An inherited deficiency of arylsulfatase A (ASA) causes the lysosomal storage disease metachromatic leukodystrophy (MLD) characterized by massive intralysosomal storage of the acidic glycosphingolipid sulfatide and progressive demyelination. Lyso-sulfatide, which differs from sulfatide by the lack of the N-linked fatty acid, also accumulates in MLD and is considered a key driver of pathology although its concentrations are far below sulfatide levels. However, the metabolic origin of lyso-sulfatide is unknown. We show here that ASA-deficient murine macrophages and microglial cells express an endo-N-deacylase that cleaves the N-linked fatty acid from sulfatide. An ASA-deficient astrocytoma cell line devoid of this activity was used to identify the enzyme by overexpressing 13 deacylases with potentially matching substrate specificities. Hydrolysis of sulfatide was detected only in cells overexpressing the enzyme fatty acid amide hydrolase (FAAH). A cell-free assay with recombinant FAAH confirmed the novel role of this enzyme in sulfatide hydrolysis. Consistent with the in vitro data, deletion of FAAH lowered lyso-sulfatide levels in a mouse model of MLD. Regardless of the established cytotoxicity of lyso-sulfatide and the anti-inflammatory effects of FAAH inhibition seen in mouse models of several neurological diseases, genetic inactivation of FAAH did not mitigate, but rather exacerbated the disease phenotype of MLD mice. This unexpected finding was reflected by worsening of rotarod performance, increase of anxiety-related exploratory activity, aggravation of peripheral neuropathy, and reduced life expectancy. Thus, we conclude that FAAH has a protective function in MLD and may represent a novel therapeutic target for treatment of this fatal condition.


Assuntos
Amidoidrolases/metabolismo , Leucodistrofia Metacromática/patologia , Psicosina/análogos & derivados , Amidoidrolases/genética , Amidoidrolases/fisiologia , Animais , Linhagem Celular , Cerebrosídeo Sulfatase/deficiência , Cerebrosídeo Sulfatase/genética , Modelos Animais de Doenças , Feminino , Leucodistrofia Metacromática/enzimologia , Leucodistrofia Metacromática/genética , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/fisiopatologia , Camundongos , Camundongos Knockout , Microglia/metabolismo , Cultura Primária de Células , Psicosina/genética , Psicosina/metabolismo , Sulfoglicoesfingolipídeos/metabolismo
7.
Acta Neuropathol ; 143(4): 453-469, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35141810

RESUMO

The protein α-synuclein, a key player in Parkinson's disease (PD) and other synucleinopathies, exists in different physiological conformations: cytosolic unfolded aggregation-prone monomers and helical aggregation-resistant multimers. It has been shown that familial PD-associated missense mutations within the α-synuclein gene destabilize the conformer equilibrium of physiologic α-synuclein in favor of unfolded monomers. Here, we characterized the relative levels of unfolded and helical forms of cytosolic α-synuclein in post-mortem human brain tissue and showed that the equilibrium of α-synuclein conformations is destabilized in sporadic PD and DLB patients. This disturbed equilibrium is decreased in a brain region-specific manner in patient samples pointing toward a possible "prion-like" propagation of the underlying pathology and forms distinct disease-specific patterns in the two different synucleinopathies. We are also able to show that a destabilization of multimers mechanistically leads to increased levels of insoluble, pathological α-synuclein, while pharmacological stabilization of multimers leads to a "prion-like" aggregation resistance. Together, our findings suggest that these disease-specific patterns of α-synuclein multimer destabilization in sporadic PD and DLB are caused by both regional neuronal vulnerability and "prion-like" aggregation transmission enabled by the destabilization of local endogenous α-synuclein protein.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Príons , Sinucleinopatias , Encéfalo/patologia , Humanos , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia , Doença de Parkinson/patologia , Príons/metabolismo , alfa-Sinucleína/metabolismo
8.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628173

RESUMO

The three isoenzymes of iodothyronine deiodinases (DIO1-3) are membrane-anchored homo-dimeric selenoproteins which share the thioredoxin-fold structure. Several questions regarding their catalytic mechanisms still remain open. Here, we addressed the roles of several cysteines which are conserved among deiodinase isoenzymes and asked whether they may contribute to dimerization and reduction of the oxidized enzyme with physiological reductants. We also asked whether amino acids previously identified in DIO3 play the same role in DIO1. Human DIO1 and 2 were recombinantly expressed in insect cells with selenocysteine replaced with cysteine (DIO1U126C) or in COS7 cells as selenoprotein. Enzyme activities were studied by radioactive deiodination assays with physiological reducing agents and recombinant proteins were characterized by mass spectrometry. Mutation of Cys124 in DIO1 prevented reduction by glutathione, while 20 mM dithiothreitol still regenerated the enzyme. Protein thiol reductants, thioredoxin and glutaredoxin, did not reduce DIO1U126C. Mass spectrometry demonstrated the formation of an intracellular disulfide between the side-chains of Cys124 and Cys(Sec)126. We conclude that the proximal Cys124 forms a selenenyl-sulfide with the catalytic Sec126 during catalysis, which is the substrate of the physiological reductant glutathione. Mutagenesis studies support the idea of a proton-relay pathway from solvent to substrate that is shared between DIO1 and DIO3.


Assuntos
Iodeto Peroxidase , Animais , Células COS , Chlorocebus aethiops , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Isoenzimas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Iodotironina Desiodinase Tipo II
9.
Proteomics ; 21(19): e2100043, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34432360

RESUMO

Neuronal ceroid lipofuscinoses (NCLs) collectively account for the highest prevalence of inherited neurodegenerative diseases in childhood. This disease group is classified by the deposition of similar autofluorescence storage material in lysosomes that is accompanied by seizures, blindness and premature mortality in later disease stages. Defects in several genes affecting various proteins lead to NCL, one of them being CLN6, a transmembrane protein resident in the endoplasmic reticulum. Dysfunctionality of CLN6 causes variant late infantile NCL (vLINCL). The function of CLN6 and how its deficiency affects lysosomal integrity remains unknown. In this work, we performed a comparative proteomic analysis of isolated lysosomal fractions from liver tissue of nclf mice, a natural mouse model displaying a similar disease course than its human counterpart. We could identify a drastic reduction in the protein amounts of selected lysosomal proteins, amongst them several members of the NCL protein family. Most of these proteins were N-glycosylated, soluble hydrolases and their reduction in protein levels was verified by western blotting and enzymatic assays. Hereby we could directly link Cln6 dysfunction to changes in the lysosomal compartment and to other NCL forms.


Assuntos
Lipofuscinoses Ceroides Neuronais , Animais , Lisossomos , Proteínas de Membrana/genética , Camundongos , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Proteínas , Proteômica
10.
Hum Mol Genet ; 28(11): 1810-1821, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657900

RESUMO

Protein engineering is a means to optimize protein therapeutics developed for the treatment of so far incurable diseases including cancers and genetic disorders. Here we report on an engineering approach in which we successfully increased the catalytic rate constant of an enzyme that is presently evaluated in enzyme replacement therapies (ERT) of a lysosomal storage disease (LSD). Although ERT is a treatment option for many LSDs, outcomes are lagging far behind expectations for most of them. This has been ascribed to insufficient enzyme activities accumulating in tissues difficult to target such as brain and peripheral nerves. We show for human arylsulfatase A (hARSA) that the activity of a therapeutic enzyme can be substantially increased by reversing activity-diminishing and by inserting activity-promoting amino acid substitutions that had occurred in the evolution of hominids and non-human mammals, respectively. The potential of this approach, here designated as evolutionary redesign, was highlighted by the observation that murinization of only 1 or 3 amino acid positions increased the hARSA activity 3- and 5-fold, with little impact on stability, respectively. The two kinetically optimized hARSA variants showed no immunogenic potential in ERT of a humanized ARSA knockout mouse model of metachromatic leukodystrophy (MLD) and reduced lysosomal storage of kidney, peripheral and central nervous system up to 3-fold more efficiently than wild-type hARSA. Due to their safety profile and higher therapeutic potential the engineered hARSA variants might represent major advances for future enzyme-based therapies of MLD and stimulate analogous approaches for other enzyme therapeutics.


Assuntos
Cerebrosídeo Sulfatase/genética , Terapia de Reposição de Enzimas/métodos , Terapia Genética , Leucodistrofia Metacromática/terapia , Doenças por Armazenamento dos Lisossomos/terapia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Cerebrosídeo Sulfatase/uso terapêutico , Modelos Animais de Doenças , Vetores Genéticos , Humanos , Rim/metabolismo , Rim/patologia , Cinética , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/patologia , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/enzimologia , Lisossomos/genética , Camundongos , Camundongos Knockout , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Engenharia de Proteínas
11.
J Cell Sci ; 132(12)2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31138677

RESUMO

Mechanisms that regulate the formation of membrane-less cellular organelles, such as neuronal RNA granules and stress granules, have gained increasing attention over the past years. These granules consist of RNA and a plethora of RNA-binding proteins. Mutations in RNA-binding proteins have been found in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). By performing pulldown experiments and subsequent mass spectrometry on mouse brain lysates, we discovered that the de-ubiquitylating enzyme OTU domain-containing protein 4 (OTUD4) unexpectedly is part of a complex network of multiple RNA-binding proteins, including core stress granule factors, such as FMRP (also known as FMR1), SMN1, G3BP1 and TIA1. We show that OTUD4 binds RNA, and that several of its interactions with RNA-binding proteins are RNA dependent. OTUD4 is part of neuronal RNA transport granules in rat hippocampal neurons under physiological conditions, whereas upon cellular stress, OTUD4 is recruited to cytoplasmic stress granules. Knockdown of OTUD4 in HeLa cells resulted in defects in stress granule formation and led to apoptotic cell death. Together, we characterize OTUD4 as a new RNA-binding protein with a suggested function in regulation of translation.


Assuntos
DNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Camundongos Endogâmicos C57BL , Mutação/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo
12.
Cryobiology ; 99: 64-77, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33485896

RESUMO

Epididymal sperm shows higher cryoresistance than ejaculated sperm. Although the sperm proteome seems to affect cell cryoresistance, studies aiming at identifying proteins involved in sperm freezing-tolerance are scarce. The aims of this study were to investigate differences of sperm freezability and proteome between epididymal and ejaculated sperm in three mountain ungulates: Iberian ibex, Mouflon and Chamois. Sperm samples were cryopreserved in straws by slow freezing. Tandem mass tag-labeled peptides from sperm samples were analyzed by high performance liquid chromatography coupled to a mass spectrometer in three technical replicates. The statistical analysis was done using the moderated t-test of the R package limma. Differences of freezability between both types of sperm were associated with differences of the proteome. Overall, epididymal sperm showed higher freezability than ejaculated sperm. Between 1490 and 1883 proteins were quantified in each species and type of sperm sample. Cross species comparisons revealed a total of 76 proteins that were more abundant in epididymal than in ejaculated sperm in the three species of study whereas 3 proteins were more abundant in ejaculated than epididymal sperm in the three species of study (adjusted P < 0.05; |log2| fold-change > 0.5). Many of the proteins that were associated with higher cryoresistance are involved in stress response and redox homeostasis. In conclusion, marked changes of sperm proteome were detected between epididymal and ejaculated sperm. This work contributes to update the sperm proteome of small ruminants and to identify candidate markers of sperm freezability.


Assuntos
Preservação do Sêmen , Animais , Criopreservação/métodos , Epididimo , Masculino , Proteoma , Ruminantes , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides
13.
J Biol Chem ; 294(24): 9592-9604, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31040178

RESUMO

Numerous lysosomal enzymes and membrane proteins are essential for the degradation of proteins, lipids, oligosaccharides, and nucleic acids. The CLN3 gene encodes a lysosomal membrane protein of unknown function, and CLN3 mutations cause the fatal neurodegenerative lysosomal storage disorder CLN3 (Batten disease) by mechanisms that are poorly understood. To define components critical for lysosomal homeostasis that are affected by this disease, here we quantified the lysosomal proteome in cerebellar cell lines derived from a CLN3 knock-in mouse model of human Batten disease and control cells. We purified lysosomes from SILAC-labeled, and magnetite-loaded cerebellar cells by magnetic separation and analyzed them by MS. This analysis identified 70 proteins assigned to the lysosomal compartment and 3 lysosomal cargo receptors, of which most exhibited a significant differential abundance between control and CLN3-defective cells. Among these, 28 soluble lysosomal proteins catalyzing the degradation of various macromolecules had reduced levels in CLN3-defective cells. We confirmed these results by immunoblotting and selected protease and glycosidase activities. The reduction of 11 lipid-degrading lysosomal enzymes correlated with reduced capacity for lipid droplet degradation and several alterations in the distribution and composition of membrane lipids. In particular, levels of lactosylceramides and glycosphingolipids were decreased in CLN3-defective cells, which were also impaired in the recycling pathway of the exocytic transferrin receptor. Our findings suggest that CLN3 has a crucial role in regulating lysosome composition and their function, particularly in degrading of sphingolipids, and, as a consequence, in membrane transport along the recycling endosome pathway.


Assuntos
Cerebelo/metabolismo , Lipídeos/análise , Lisossomos/metabolismo , Glicoproteínas de Membrana/deficiência , Transporte Proteico , Proteínas/metabolismo , Proteoma/análise , Animais , Hidrolases/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Receptores da Transferrina/metabolismo
14.
J Neurochem ; 152(6): 710-726, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31520481

RESUMO

Increasing evidence suggests that both synaptic loss and neuroinflammation constitute early pathologic hallmarks of Alzheimer's disease. A downstream event during inflammatory activation of microglia and astrocytes is the induction of nitric oxide synthase type 2, resulting in an increased release of nitric oxide and the post-translational S-nitrosylation of protein cysteine residues. Both early events, inflammation and synaptic dysfunction, could be connected if this excess nitrosylation occurs on synaptic proteins. In the long term, such changes could provide new insight into patho-mechanisms as well as biomarker candidates from the early stages of disease progression. This study investigated S-nitrosylation in synaptosomal proteins isolated from APP/PS1 model mice in comparison to wild type and NOS2-/- mice, as well as human control, mild cognitive impairment and Alzheimer's disease brain tissues. Proteomics data were obtained using an established protocol utilizing an isobaric mass tag method, followed by nanocapillary high performance liquid chromatography tandem mass spectrometry. Statistical analysis identified the S-nitrosylation sites most likely derived from an increase in nitric oxide (NO) in dependence of presence of AD pathology, age and the key enzyme NOS2. The resulting list of candidate proteins is discussed considering function, previous findings in the context of neurodegeneration, and the potential for further validation studies.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Proteômica/métodos , Sinaptossomos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/ultraestrutura , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/classificação , Transdução de Sinais , Sinaptossomos/química
15.
J Biol Chem ; 293(29): 11537-11552, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29895621

RESUMO

Proteins in mammalian cells exhibit optimal stability at physiological temperatures, and even small temperature variations may cause unfolding and nonspecific aggregation. Because this process leads to a loss of function of the affected polypeptides and to cytotoxic stress, formation of protein aggregates has been recognized as a major pathogenic factor in human diseases. In this study, we determined the impact of physiological heat stress on mitochondria isolated from HeLa cells. We found that the heat-stressed mitochondria had lower membrane potential and ATP level and exhibited a decreased production of reactive oxygen species. An analysis of the mitochondrial proteome by 2D PAGE showed that the overall solubility of endogenous proteins was only marginally affected by elevated temperatures. However, a small subset of polypeptides exhibited an high sensitivity to heat stress. The mitochondrial translation elongation factor Tu (Tufm), a protein essential for organellar protein biosynthesis, was highly aggregation-prone and lost its solubility already under mild heat-stress conditions. Moreover, mitochondrial translation and the import of cytosolic proteins were defective in the heat-stressed mitochondria. Both types of nascent polypeptides, produced by translation or imported into the mitochondria, exhibited a strong tendency to aggregate in the heat-exposed mitochondria. We propose that a fast and specific inactivation of elongation factors may prevent the accumulation of misfolded nascent polypeptides and may thereby attenuate proteotoxicity under heat stress.


Assuntos
Resposta ao Choque Térmico , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Agregados Proteicos , Trifosfato de Adenosina/metabolismo , Células HeLa , Temperatura Alta , Humanos , Potencial da Membrana Mitocondrial , Fator Tu de Elongação de Peptídeos/metabolismo
16.
J Immunol ; 198(8): 3033-3044, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275138

RESUMO

FcεRII is a multifunctional low-affinity IgER that is involved in the pathogenesis of allergic, inflammatory, and neoplastic diseases. Although discrepancies in FcεRII-mediated functions are being increasingly recognized, the consequences of FcεRII activation are not completely understood. In this study, we evaluated the expression of FcεRII on human blood cells and found that it was primarily expressed on monocytes and B cells. Although IL-4 promoted expression of the FcεRIIb isoform on B cells and monocytes, the expression of the FcεRIIa isoform was not dependent on IL-4. Furthermore, FcεRII predominantly bound allergen-IgE complexes on B cells but not on monocytes. FcεRII-mediated allergen-IgE complex uptake by B cells directed Ags to MHC class II-rich compartments. FcεRII-bearing monocytes and B cells expressed high levels of the FcεRII sheddase a disintegrin and metalloproteinase 10, which implies that they are important sources of soluble FcεRII. Moreover, we identified that IgE immune complex stimulation of FcεRII activated intracellular tyrosine phosphorylation via Syk in B cells but not in monocytes. Importantly, FcεRII-mediated signaling by allergen-IgE immune complexes increased IFN-γ production in B cells of allergic patients during the build-up phase of allergen-specific immunotherapy. Together, our results demonstrate that FcεRII mediates cell type-dependent function in allergic reactions. In addition, the results identify a novel allergen-IgE complex/FcεRII/Syk/IFN-γ pathway in allergic responses and suggest that FcεRII may play a role in regulating allergic reactions via modulating IFN-γ production in B cells.


Assuntos
Linfócitos B/imunologia , Ativação Linfocitária/imunologia , Monócitos/imunologia , Receptores de IgE/imunologia , Hipersensibilidade Respiratória/imunologia , Adulto , Idoso , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Hipersensibilidade , Immunoblotting , Imunoprecipitação , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Transdução de Sinais/imunologia
17.
Protein Expr Purif ; 134: 25-37, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28323169

RESUMO

CapG is an actin-binding protein, which is overexpressed in a variety of tumors, i.e. breast, ovarian, pancreatic and lung carcinoma. We successfully expressed human CapG in the wild type strain X-33 of the methylotrophic yeast Pichia pastoris (P. pastoris), which does not express endogenous CapG, in order to characterize this protein in more detail. After mechanical cell lysis, debris was centrifuged and the soluble protein was precipitated with ammonium sulfate. This protein pellet was dialyzed and used for CapG purification. Ca2+-dependent exposure of hydrophobic sites allowed single step and selective elution from a Phenyl Sepharose™ matrix. 3.5 mg CapG/10 g wet biomass were isolated and showed a Ca2+-sensitive and dose-dependent capping activity of actin in a fluorometric assay. In P. pastoris, CapG is located at actin patches, actin cables and arranges along the budding neck. The proliferation rate and morphology of the yeast cells are not influenced by the interaction of CapG with actin. The modification pattern of human CapG from P. pastoris and human carcinoma cells is highly similar. We validated most of the known post-translational modifications and found three new phosphorylation and nine new acetylation sites by mass spectrometry. The N-terminus is acetylated or truncated. Truncated CapG is not phosphorylated at the residues S10, T212 and S337. First mutagenesis experiments indicate an N-terminal acetylation dependent C-terminal phosphorylation.


Assuntos
Expressão Gênica , Proteínas dos Microfilamentos , Proteínas Nucleares , Pichia/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Linhagem Celular Tumoral , Humanos , Proteínas dos Microfilamentos/biossíntese , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/isolamento & purificação , Proteínas Nucleares/biossíntese , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/isolamento & purificação , Fosforilação , Pichia/genética , Proteínas Recombinantes
18.
Appl Environ Microbiol ; 80(7): 2279-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24487535

RESUMO

In the present study, we compared the proteome response of Allochromatium vinosum when growing photoautotrophically in the presence of sulfide, thiosulfate, and elemental sulfur with the proteome response when the organism was growing photoheterotrophically on malate. Applying tandem mass tag analysis as well as two-dimensional (2D) PAGE, we detected 1,955 of the 3,302 predicted proteins by identification of at least two peptides (59.2%) and quantified 1,848 of the identified proteins. Altered relative protein amounts (≥1.5-fold) were observed for 385 proteins, corresponding to 20.8% of the quantified A. vinosum proteome. A significant number of the proteins exhibiting strongly enhanced relative protein levels in the presence of reduced sulfur compounds are well documented essential players during oxidative sulfur metabolism, e.g., the dissimilatory sulfite reductase DsrAB. Changes in protein levels generally matched those observed for the respective relative mRNA levels in a previous study and allowed identification of new genes/proteins participating in oxidative sulfur metabolism. One gene cluster (hyd; Alvin_2036-Alvin_2040) and one hypothetical protein (Alvin_2107) exhibiting strong responses on both the transcriptome and proteome levels were chosen for gene inactivation and phenotypic analyses of the respective mutant strains, which verified the importance of the so-called Isp hydrogenase supercomplex for efficient oxidation of sulfide and a crucial role of Alvin_2107 for the oxidation of sulfur stored in sulfur globules to sulfite. In addition, we analyzed the sulfur globule proteome and identified a new sulfur globule protein (SgpD; Alvin_2515).


Assuntos
Proteínas de Bactérias/análise , Chromatiaceae/química , Chromatiaceae/metabolismo , Proteoma/análise , Enxofre/metabolismo , Processos Autotróficos , Eletroforese em Gel Bidimensional , Inativação Gênica , Genes Bacterianos , Espectrometria de Massas , Oxirredução , Processos Fototróficos , Sulfetos/metabolismo , Tiossulfatos/metabolismo
19.
J Proteome Res ; 11(6): 3370-81, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22497526

RESUMO

Angiotensin-(1-7) [Ang-(1-7)] is an endogenous ligand of the Mas receptor and induces vasodilation, positive regulation of insulin, and antiproliferative and antitumorigenic activities. However, little is known about the molecular mechanisms behind these biological properties. Aiming to identify proteins involved in the Ang-(1-7) signaling, we performed a mass spectrometry-based time-resolved quantitative phosphoproteome study of human aortic endothelial cells (HAEC) treated with Ang-(1-7). We identified 1288 unique phosphosites on 699 different proteins with 99% certainty of correct peptide identification and phosphorylation site localization. Of these, 121 sites on 79 proteins had their phosphorylation levels significantly changed by Ang-(1-7). Our data suggest that the antiproliferative activity of Ang-(1-7) is due to the activation or inactivation of several target phosphoproteins, such as forkhead box protein O1 (FOXO1), mitogen-activated protein kinase 1 (MAPK), proline-rich AKT1 substrate 1 (AKT1S1), among others. In addition, the antitumorigenic activity of Ang-(1-7) is at least partially due to FOXO1 activation, since we show that this transcriptional factor is activated and accumulated in the nucleus of A549 lung adenocarcinoma cells treated with Ang-(1-7). Moreover, Ang-(1-7) triggered changes in the phosphorylation status of several known downstream effectors of the insulin signaling, indicating an important role of Ang-(1-7) in glucose homeostasis. In summary, this study provides new concepts and new understanding of the Ang-(1-7) signal transduction, shedding light on the mechanisms underlying Mas activation.


Assuntos
Angiotensina I/fisiologia , Células Endoteliais/metabolismo , Fragmentos de Peptídeos/fisiologia , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Ativo do Núcleo Celular , Aorta/citologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Humanos , Anotação de Sequência Molecular , Fosforilação , Mapas de Interação de Proteínas , Proteoma/metabolismo , Proteômica , Transdução de Sinais
20.
Anal Chem ; 84(22): 9694-9, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23061748

RESUMO

Reversible protein phosphorylation plays a critical role in cell signaling and is responsible for the regulation of many biological processes in most living organisms. The low stoichiometry of protein phosphorylation requires sensitive analysis by tandem mass spectrometry. However, incomplete peptide fragmentation and the loss of labile phosphate groups complicate identification of the site of the phosphate motif. Here, we have implemented and evaluated a novel approach for phospho-site localization by the combined use of peptide tandem mass spectrometry data obtained using both collision-activated dissociation and electron transfer dissociation, an approach termed the Cscore. The scoring algorithm used in the Cscore was adapted from the widely used Ascore method. The analytical benefit of integrating the product ion information of both ETD and CAD data are evident by increased confidence in phospho-site localization and the number of assigned phospho-sites at a fixed false-localization rate. The average calculated Cscore from a large data set (>7000 phosphopeptide MS/MS spectra) was ∼32 compared to ∼23 and ∼17 for the Ascore using collision-activated dissociation (CAD) or electron transfer dissociation (ETD), respectively. Compared with the Ascore using either CAD or ETD, the Cscore identified up to 88% more phosphorylation sites. Using a phosphopeptide library revealed that the score threshold for obtaining a false-localization rate of 0.5% was lower for the Cscore than either the Ascore (CAD) or the Ascore (ETD).


Assuntos
Fosfoproteínas/química , Fosfoproteínas/metabolismo , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Automação , Sítios de Ligação , Linhagem Celular Tumoral , Transporte de Elétrons , Humanos , Dados de Sequência Molecular , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA