Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008976

RESUMO

Thymosin ß4 (Tß4) was extracted forty years agofrom calf thymus. Since then, it has been identified as a G-actin binding protein involved in blood clotting, tissue regeneration, angiogenesis, and anti-inflammatory processes. Tß4 has also been implicated in tumor metastasis and neurodegeneration. However, the precise roles and mechanism(s) of action of Tß4 in these processes remain largely unknown, with the binding of the G-actin protein being insufficient to explain these multi-actions. Here we identify for the first time the important role of Tß4 mechanism in ferroptosis, an iron-dependent form of cell death, which leads to neurodegeneration and somehow protects cancer cells against cell death. Specifically, we demonstrate four iron2+ and iron3+ binding regions along the peptide and show that the presence of Tß4 in cell growing medium inhibits erastin and glutamate-induced ferroptosis in the macrophage cell line. Moreover, Tß4 increases the expression of oxidative stress-related genes, namely BAX, hem oxygenase-1, heat shock protein 70 and thioredoxin reductase 1, which are downregulated during ferroptosis. We state the hypothesis that Tß4 is an endogenous iron chelator and take part in iron homeostasis in the ferroptosis process. We discuss the literature data of parallel involvement of Tß4 and ferroptosis in different human pathologies, mainly cancer and neurodegeneration. Our findings confronted with literature data show that controlled Tß4 release could command on/off switching of ferroptosis and may provide novel therapeutic opportunities in cancer and tissue degeneration pathologies.


Assuntos
Ferroptose/efeitos dos fármacos , Quelantes de Ferro/química , Quelantes de Ferro/farmacologia , Timosina/química , Timosina/farmacologia , Sequência de Aminoácidos , Ferroptose/genética , Expressão Gênica , Humanos , Ligação de Hidrogênio , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Análise Espectral , Relação Estrutura-Atividade , Timosina/genética
2.
Int J Mol Sci ; 21(19)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027928

RESUMO

Health-care systems that develop rapidly and efficiently may increase the lifespan of humans. Nevertheless, the older population is more fragile, and is at an increased risk of disease development. A concurrently growing number of surgeries and transplantations have caused antibiotics to be used much more frequently, and for much longer periods of time, which in turn increases microbial resistance. In 1945, Fleming warned against the abuse of antibiotics in his Nobel lecture: "The time may come when penicillin can be bought by anyone in the shops. Then there is the danger that the ignorant man may easily underdose himself and by exposing his microbes to non-lethal quantities of the drug make them resistant". After 70 years, we are witnessing the fulfilment of Fleming's prophecy, as more than 700,000 people die each year due to drug-resistant diseases. Naturally occurring antimicrobial peptides protect all living matter against bacteria, and now different peptidomimetic strategies to engineer innovative antibiotics are being developed to defend humans against bacterial infections.


Assuntos
Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Peptídeos/uso terapêutico , Peptidomiméticos/uso terapêutico , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Peptídeos/química
3.
Molecules ; 25(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050240

RESUMO

Studying disease models at the molecular level is vital for drug development in order to improve treatment and prevent a wide range of human pathologies. Microbial infections are still a major challenge because pathogens rapidly and continually evolve developing drug resistance. Cancer cells also change genetically, and current therapeutic techniques may be (or may become) ineffective in many cases. The pathology of many neurological diseases remains an enigma, and the exact etiology and underlying mechanisms are still largely unknown. Viral infections spread and develop much more quickly than does the corresponding research needed to prevent and combat these infections; the present and most relevant outbreak of SARS-CoV-2, which originated in Wuhan, China, illustrates the critical and immediate need to improve drug design and development techniques. Modern day drug discovery is a time-consuming, expensive process. Each new drug takes in excess of 10 years to develop and costs on average more than a billion US dollars. This demonstrates the need of a complete redesign or novel strategies. Nuclear Magnetic Resonance (NMR) has played a critical role in drug discovery ever since its introduction several decades ago. In just three decades, NMR has become a "gold standard" platform technology in medical and pharmacology studies. In this review, we present the major applications of NMR spectroscopy in medical drug discovery and development. The basic concepts, theories, and applications of the most commonly used NMR techniques are presented. We also summarize the advantages and limitations of the primary NMR methods in drug development.


Assuntos
Desenho de Fármacos , Descoberta de Drogas/métodos , Espectroscopia de Ressonância Magnética/métodos , Humanos
4.
ACS Omega ; 9(14): 16496-16507, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617658

RESUMO

The unique photophysical properties of single-walled carbon nanotubes (SWCNTs) exhibit great potential for bioimaging applications. This led to extensive exploration of photosensitization methods to improve their faint shortwave infrared (SWIR) photoluminescence. Here, we report the mechanisms of SWCNT-assisted J-aggregation of cyanine dyes and the associated photoluminescence enhancement of SWCNTs in the SWIR spectral region. Surprisingly, we found that excitation energy transfer between the cyanine dyes and SWCNTs makes a negligible contribution to the overall photoluminescence enhancement. Instead, the shielding of SWCNTs from the surrounding water molecules through hydrogen bond-assisted macromolecular reorganization of ionic surfactants triggered by counterions and the physisorption of the dye molecules on the side walls of SWCNTs play a primary role in the photoluminescence enhancement of SWCNTs. We observed 2 orders of magnitude photoluminescence enhancement of SWCNTs by optimizing these factors. Our findings suggest that the proper shielding of SWCNTs is the critical factor for their photoluminescence enhancement, which has important implications for their application as imaging agents in biological settings.

5.
Structure ; 31(10): 1200-1207.e5, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37527654

RESUMO

ASH1L is a histone methyltransferase that regulates gene expression through methylation of histone H3 on lysine K36. While the catalytic SET domain of ASH1L has low intrinsic activity, several studies found that it can be vastly enhanced by the interaction with MRG15 protein and proposed allosteric mechanism of releasing its autoinhibited conformation. Here, we found that full-length MRG15, but not the MRG domain alone, can enhance the activity of the ASH1L SET domain. In addition, we showed that catalytic activity of MRG15-ASH1L depends on nucleosome binding mediated by MRG15 chromodomain. We found that in solution MRG15 binds to ASH1L, but has no impact on the conformation of the SET domain autoinhibitory loop or the S-adenosylmethionine cofactor binding site. Moreover, MRG15 binding did not impair the potency of small molecule inhibitors of ASH1L. These findings suggest that MRG15 functions as an adapter that enhances ASH1L catalytic activity by recruiting nucleosome substrate.


Assuntos
Nucleossomos , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/química , Metilação , Histona-Lisina N-Metiltransferase/química , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo
6.
Front Pharmacol ; 13: 805782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387341

RESUMO

Fluxomics is an innovative -omics research field that measures the rates of all intracellular fluxes in the central metabolism of biological systems. Fluxomics gathers data from multiple different -omics fields, portraying the whole picture of molecular interactions. Recently, fluxomics has become one of the most relevant approaches to investigate metabolic phenotypes. Metabolic flux using 13C-labeled molecules is increasingly used to monitor metabolic pathways, to probe the corresponding gene-RNA and protein-metabolite interaction networks in actual time. Thus, fluxomics reveals the functioning of multi-molecular metabolic pathways and is increasingly applied in biotechnology and pharmacology. Here, we describe the main fluxomics approaches and experimental platforms. Moreover, we summarize recent fluxomic results in different biological systems.

7.
Sci Adv ; 8(34): eabl9461, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36001657

RESUMO

Chromatin marks are recognized by distinct binding modules, many of which are embedded in multidomain proteins. How the different functionalities of such complex chromatin modulators are regulated is often unclear. Here, we delineated the interplay of the H3 amino terminus- and K9me-binding activities of the multidomain hUHRF1 protein. We show that the phosphoinositide PI5P interacts simultaneously with two distant flexible linker regions connecting distinct domains of hUHRF1. The binding is dependent on both, the polar head group, and the acyl part of the phospholipid and induces a conformational rearrangement juxtaposing the H3 amino terminus and K9me3 recognition modules of the protein. In consequence, the two features of the H3 tail are bound in a multivalent, synergistic manner. Our work highlights a previously unidentified molecular function for PI5P outside of the context of lipid mono- or bilayers and establishes a molecular paradigm for the allosteric regulation of complex, multidomain chromatin modulators by small cellular molecules.

8.
Foods ; 10(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072780

RESUMO

A healthy condition is defined by complex human metabolic pathways that only function properly when fully satisfied by nutritional inputs. Poor nutritional intakes are associated with a number of metabolic diseases, such as diabetes, obesity, atherosclerosis, hypertension, and osteoporosis. In recent years, nutrition science has undergone an extraordinary transformation driven by the development of innovative software and analytical platforms. However, the complexity and variety of the chemical components present in different food types, and the diversity of interactions in the biochemical networks and biological systems, makes nutrition research a complicated field. Metabolomics science is an "-omic", joining proteomics, transcriptomics, and genomics in affording a global understanding of biological systems. In this review, we present the main metabolomics approaches, and highlight the applications and the potential for metabolomics approaches in advancing nutritional food research.

9.
PLoS One ; 15(6): e0234901, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32579565

RESUMO

Lasso peptides are unique in that the tail of the lasso peptide threads through its macrolactam ring. The unusual structure and biological activity of lasso peptides have generated increased interest from the scientific community in recent years. Because of this, many new types of lasso peptides have been discovered. These peptides can be synthesized by microorganisms efficiently, and yet, their chemical assembly is challenging. Herein, we investigated the possibility of high pressure inducing the cyclization of linear precursors of lasso peptides. Unlike other molecules like rotaxanes which mechanically interlock at high pressure, the threaded lasso peptides did not form, even at pressures the high pressure up to 14 000 kbar.


Assuntos
Peptídeos/química , Peptídeos/síntese química , Sequência de Aminoácidos , Ciclização , Dissulfetos/química , Oxirredução , Pressão , Conformação Proteica , Soluções
10.
RSC Adv ; 10(1): 215-227, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35492549

RESUMO

The process of aggregation of proteins and peptides is dependent on the concentration of proteins, and the rate of aggregation can be altered by the presence of metal ions, but this dependence is not always a straightforward relationship. In general, aggregation does not occur under normal physiological conditions, yet it can be induced in the presence of certain metal ions. However, the extent of the influence of metal ion interactions on protein aggregation has not yet been fully comprehended. A consensus has thus been difficult to reach because the acceleration/inhibition of the aggregation of proteins in the presence of metal ions depends on several factors such as pH and the concentration of the aggregated proteins involved as well as metal concentration level of metal ions. Metal ions, like Cu2+, Zn2+, Pb2+ etc. may either accelerate or inhibit aggregation simply because the experimental conditions affect the behavior of biomolecules. It is clear that understanding the relationship between metal ion concentration and protein aggregation will prove useful for future scientific applications. This review focuses on the dependence of the aggregation of selected important biomolecules (peptides and proteins) on metal ion concentrations. We review proteins that are prone to aggregation, the result of which can cause serious neurodegenerative disorders. Furthering our understanding of the relationship between metal ion concentration and protein aggregation will prove useful for future scientific applications, such as finding therapies for neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA