RESUMO
The toxicity of misfolded proteins and mitochondrial dysfunction are pivotal factors that promote age-associated functional neuronal decline and neurodegenerative disease. Accordingly, neurons invest considerable cellular resources in chaperones, protein degradation, autophagy and mitophagy to maintain proteostasis and mitochondrial quality. Complicating the challenges of neuroprotection, misfolded human disease proteins and mitochondria can move into neighbouring cells via unknown mechanisms, which may promote pathological spread. Here we show that adult neurons from Caenorhabditis elegans extrude large (approximately 4 µm) membrane-surrounded vesicles called exophers that can contain protein aggregates and organelles. Inhibition of chaperone expression, autophagy or the proteasome, in addition to compromising mitochondrial quality, enhances the production of exophers. Proteotoxically stressed neurons that generate exophers subsequently function better than similarly stressed neurons that did not produce exophers. The extruded exopher transits through surrounding tissue in which some contents appear degraded, but some non-degradable materials can subsequently be found in more remote cells, suggesting secondary release. Our observations suggest that exopher-genesis is a potential response to rid cells of neurotoxic components when proteostasis and organelle function are challenged. We propose that exophers are components of a conserved mechanism that constitutes a fundamental, but formerly unrecognized, branch of neuronal proteostasis and mitochondrial quality control, which, when dysfunctional or diminished with age, might actively contribute to pathogenesis in human neurodegenerative disease and brain ageing.
Assuntos
Caenorhabditis elegans/metabolismo , Micropartículas Derivadas de Células/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Neuroproteção/fisiologia , Agregados Proteicos , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Autofagia , Caenorhabditis elegans/citologia , Citoplasma/metabolismo , Chaperonas Moleculares/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Oxirredução , Complexo de Endopeptidases do Proteassoma/metabolismoRESUMO
Introduction: Despite widespread use of cannabidiol (CBD), no lifelong toxicity study has been published to date. Caenorhabditis elegans is often used in preclinical lifelong toxicity studies, due to an estimated 60-80% of their genes having a human ortholog, and their short lifespan of â¼2-3 weeks. In this study, we examined both acute and long-term exposure studies of CBD at physiologically relevant concentrations. Materials and Methods: Acute toxicity was determined by treating day 1 adults with a wide range of CBD concentrations (0.4 µM to 4 mM) and assessing mortality and motility compared to control animals. Thermotolerance was examined by treating adult animals with CBD (0.4 µM to 4 mM) and exposing them to 37°C for 4 h, and then scoring for the number of alive animals treated with CBD compared to controls. Long-term toxicity was assessed by exposing day 1 adults to 10, 40, and 100 µM CBD until all animals perished. Control animals had no active drug exposure. Results: We report both acute and long-term exposure studies of CBD to adult C. elegans at physiologically relevant concentrations. Acute toxicity results showed that no animal died when exposed to 0.4-4000 µM CBD. The thermotolerance study showed that 40 µM CBD, but not other treatment levels, significantly increased resistance to heat stress by 141% compared to the untreated controls. Notably, whole-life exposure of C. elegans to 10-100 µM CBD revealed a maximum life extension of 18% observed at 40 µM CBD. In addition, motility analysis of the same groups revealed an increase in late-stage life activity by up to 206% compared to controls. Conclusion: These results serve as the only CBD lifelong exposure data in an in vivo model to date. While further research into the lifelong use of CBD should be carried out in mammalian models, the C. elegans model indicates a lack of long-term toxicity at physiologically relevant concentrations.
Assuntos
Canabidiol , Termotolerância , Animais , Caenorhabditis elegans , Canabidiol/toxicidade , Humanos , LongevidadeRESUMO
Transcriptome-based drug screening is emerging as a powerful tool to identify geroprotective compounds to intervene in age-related disease. We hypothesized that, by mimicking the transcriptional signature of the highly conserved longevity intervention of FOXO3 (daf-16 in worms) overexpression, we could identify and repurpose compounds with similar downstream effects to increase longevity. Our in silico screen, utilizing the LINCS transcriptome database of genetic and compound interventions, identified several FDA-approved compounds that activate FOXO downstream targets in mammalian cells. These included the neuromuscular blocker atracurium, which also robustly extends both lifespan and healthspan in Caenorhabditis elegans. This longevity is dependent on both daf-16 signaling and inhibition of the neuromuscular acetylcholine receptor subunit unc-38. We found unc-38 RNAi to improve healthspan, lifespan, and stimulate DAF-16 nuclear localization, similar to atracurium treatment. Finally, using RNA-seq transcriptomics, we identify atracurium activation of DAF-16 downstream effectors. Together, these data demonstrate the capacity to mimic genetic lifespan interventions with drugs, and in doing so, reveal that the neuromuscular acetylcholine receptor regulates the highly conserved FOXO/DAF-16 longevity pathway.
Assuntos
Atracúrio/uso terapêutico , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/metabolismo , Longevidade/genética , Receptores Colinérgicos/metabolismo , Animais , Atracúrio/farmacologia , CamundongosRESUMO
Here we show that in the nematode Caenorhabditis elegans mutational inactivation of two autophagy genes unc-51/atg1 and bec-1/atg6/beclin1 results in small body size without affecting cell number. Furthermore, loss-of-function mutations in unc-51 and bec-1 suppress the giant phenotype of mutant animals with aberrant insulin-like growth factor-1 (insulin/IGF-1) or transforming growth factor-beta (TGF-beta) signaling. This function for unc-51 and bec-1 in cell size control and their interaction with these two growth modulatory pathways may represent a link between the hormonal and nutritional regulation of cell growth.
Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/crescimento & desenvolvimento , Tamanho Celular , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Mutação , Fenótipo , Somatomedinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Transporte VesicularRESUMO
We present a 3D tomography technique for in vivo observation of microscopic samples. The method combines flow in a microfluidic channel, illumination through a slit aperture, and a Fourier lens for simultaneous acquisition of multiple perspective angles in the phase-space domain. The technique is non-invasive and naturally robust to parasitic sample motion. 3D absorption is retrieved using standard back-projection algorithms, here a limited-domain inverse radon transform. Simultaneously, 3D differential phase contrast images are obtained by computational refocusing and comparison of complementary illumination angles. We implement the technique on a modified glass slide which can be mounted directly on existing optical microscopes. We demonstrate both amplitude and phase tomography on live, freely swimming C. elegans nematodes.
Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Tomografia Óptica/instrumentação , Animais , Caenorhabditis elegans , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/métodos , Tomografia Óptica/métodosRESUMO
Cell growth-the primary determinant of cell size-has an intimate relationship with proliferation; cells divide only after they reach a critical size. Despite its developmental and medical significance, little is known about cellular pathways that mediate the growth of cells. Accumulating evidence demonstrates a role for autophagy-a mechanism of eukaryotic cells to digest their own constituents during development or starvation-in cell size control. Increasing autophagic activity by prolonged starvation, rapamycin treatment inhibiting TOR (target of rapamycin) signaling, or genetic intervention, causes cellular atrophy in worms, flies and mammalian cell cultures. In contrast, we have shown that in the nematode Caenorhabditis elegans mutational inactivation of two autophagy genes, unc-51/Atg1 and bec-1/Atg6, confers reduced cell size. We argue that physiological levels of autophagy are required for normal cell size, whereas both insufficient and excessive levels of autophagy lead to retarded cell growth. Furthermore, we discuss data suggesting that the insulin/IGF-1 (insulin-like growth factor receptor-1) and TGF-beta (transforming growth factor-beta) signaling systems acting as major growth regulatory pathways converge on autophagy genes to control cell size. Thus, autophagy may act as a central regulatory mechanism of cell growth.
Assuntos
Autofagia , Caenorhabditis elegans/fisiologia , Crescimento Celular , Tamanho Celular , Animais , Autofagia/genética , Autofagia/fisiologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
Autophagy (cellular self-eating) is a highly regulated, lysosome-mediated catabolic process of eukaryotic cells to segregate by a special membrane and subsequently degrade their own constituents during development or starvation. Electron microscopy analysis reveals autophagic elements in various cell types of the nematode Caenorhabditis elegans, whose genome contains counterparts of several yeast genes involved in autophagy. Genetic manipulation inactivating autophagy-related genes in C. elegans causes defects in development, affects dauer larval morphogenesis, accelerates aging thereby shortening life span, reduces cell size, decreases survival during starvation, promotes apoptotic cell death, and protects neurons from undergoing hyperactive ion channel- or neurotoxin-induced degeneration. These results implicate autophagy in various developmental and cellular functions such as reproductive growth, aging, and cell growth, as well as cell survival and loss. This chapter discusses methods of inactivating C. elegans autophagy genes by RNA interference, testing the resistance of autophagy-deficient nematodes to starvation-induced stress, handling mutants carrying a deletion in the autophagy pathway, and monitoring autophagic activity by using LysoTracker Red dye or reporters labeled with green fluorescent protein. Such methods may be adaptable to identify additional roles of autophagy in development and cellular function, and may also help to detect the intracellular accumulation of autophagy proteins and monitor autophagosome formation.
Assuntos
Autofagia/genética , Caenorhabditis elegans/fisiologia , Animais , Autofagia/fisiologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade/genética , Mutação , Fagossomos/metabolismo , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Inanição/genética , Taxa de SobrevidaRESUMO
Aging is a multifactorial process with many mechanisms contributing to the decline. Mutations decreasing insulin/IGF-1 (insulin-like growth factor-1) or TOR (target of rapamycin) kinase-mediated signaling, mitochondrial activity and food intake each extend life span in divergent animal phyla. Understanding how these genetically distinct mechanisms interact to control longevity is a fundamental and fascinating problem in biology. Here we show that mutational inactivation of autophagy genes, which are involved in the degradation of aberrant, damaged cytoplasmic constituents accumulating in all aging cells, accelerates the rate at which the tissues age in the nematode Caenorhabditis elegans. According to our results Drosophila flies deficient in autophagy are also short-lived. We further demonstrate that reduced activity of autophagy genes suppresses life span extension in mutant nematodes with inherent dietary restriction, aberrant insulin/IGF-1 or TOR signaling, and lowered mitochondrial respiration. These findings suggest that the autophagy gene cascade functions downstream of and is inhibited by different longevity pathways in C. elegans, therefore, their effects converge on autophagy genes to slow down aging and lengthen life span. Thus, autophagy may act as a central regulatory mechanism of animal aging.
Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Envelhecimento/fisiologia , Animais , Autofagia/genética , Proteínas de Caenorhabditis elegans/genética , Drosophila/genética , Drosophila/fisiologia , Insulina/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Longevidade/fisiologia , Mitocôndrias/fisiologia , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
Autophagy is a highly regulated cellular pathway used by eukaryotic cells to consume parts of their constituents during development or starvation. It is associated with extensive rearrangements of intracellular membranes, and involves the cooperation of many gene products in the regulation and execution phase by largely unknown mechanisms. Recent results strongly indicate the role of autophagy in the degradation of damaged macromolecules, in particular misfolded, aberrant proteins, and in organelle turnover; in mutant mice with reduced autophagy, accumulation of abnormal cytosolic proteins as inclusion bodies and massive cell loss occur similarly to human neurodegenerative disorders. Thus, autophagy seems to prevent neurons from undergoing protein aggregation-induced degeneration. In contrast, we have shown that inactivation of genes involved in autophagosome formation suppresses neuronal demise induced by various hyperactivating ion channel mutations or by neurotoxins in the nematode Caenorhabditis elegans. These results raise the possibility that autophagy may also contribute to excitotoxic necrotic-like cell death. This way, autophagic degradation of cytoplasmic materials might have a dual role in the survival of neurons. Depending on the actual cellular milieu and insulting factor, it can act both as a protector and contributor to neuronal damage.
Assuntos
Autofagia/fisiologia , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Animais , Autofagia/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Genes de Helmintos , Humanos , Canais Iônicos/genética , Canais Iônicos/fisiologia , Modelos Neurológicos , Mutação , Degeneração Neural/genéticaRESUMO
Necrotic cell death is a common feature in numerous human neurodegenerative disorders. In the nematode Caenorhabditis elegans, gain-of-function mutations in genes that encode specific ion channel subunits such as the degenerins DEG-1 and MEC-4, and the acetylcholine receptor subunit DEG-3 lead to necrotic-like degeneration of a subset of neurons. Neuronal demise caused by ion channel hyperactivity is accompanied by intense degradation of cytoplasmic contents, dramatic membrane infolding and vacuole formation; however, the cellular pathways underlying such processes remain largely unknown. Here we show that the function of three autophagy genes, whose yeast and mammalian orthologs are implicated in cytoplasmic self-degradation, membrane trafficking and the cellular response to starvation, contributes to ion-channel-dependent neurotoxicity in C. elegans. Inactivation of unc-51, bec-1 and lgg-1, the worm counterparts of the yeast autophagy genes Atg1, Atg6 and Atg8 respectively, partially suppresses degeneration of neurons with toxic ion channel variants. We also demonstrate that the TOR-kinase-mediated signaling pathway, a nutrient sensing system that downregulates the autophagy gene cascade, protects neurons from undergoing necrotic cell death, whereas nutrient deprivation promotes necrosis. Our findings reveal a role for autophagy genes in neuronal cell loss in C. elegans.