Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mycopathologia ; 187(5-6): 481-489, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36094777

RESUMO

Development of new topical drugs requires an animal onychomycosis model that can predict the drug efficacy against moderate to severe human onychomycosis because the severity of onychomycosis varies and affects the drug efficacy. This study established a non-immunosuppressive guinea pig tinea unguium model under 8-week infection condition in addition to a previously reported model under 4-week infection condition. In the tinea unguium model, most fungi were tightly present in the arthrospore form, like in human onychomycosis. The topical formulations of efinaconazole and luliconazole, two azole class anti-onychomycosis drugs, were evaluated for their efficacy in these models. In the untreated group, the nail fungal burden in the 8-week model was higher than that in the 4-week model and the stronger infection intensity affected the efficacy of the drugs, suggesting that the 8-week model was more severe. The 90% efficacy rate (42%) of luliconazole in the 8-week model was significantly lowered than that (83%) in the 4-week model, and its 99% efficacy rates were 0% in both models. Conversely, the 90% and 99% efficacy rates of efinaconazole (92% and 50% in the 4-week model, and 75% and 25% in the 8-week model, respectively) were not significantly different between the two infection durations. In addition, efinaconazole was more effective than luliconazole in reducing the nail fungal burden. Considering the relevance of clinical reports of the effectiveness of efinaconazole on severe onychomycosis, the new severe tinea unguium model would predict drug efficacy against moderate to severe onychomycosis.


Assuntos
Onicomicose , Humanos , Cobaias , Animais , Onicomicose/tratamento farmacológico , Onicomicose/microbiologia , Antifúngicos/uso terapêutico , Administração Tópica , Modelos Animais de Doenças
2.
Arch Biochem Biophys ; 711: 109029, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34517011

RESUMO

Because of the critical roles of Toll-like receptors (TLRs) and receptor for advanced glycation end-products (RAGE) in the pathophysiology of various acute and chronic inflammatory diseases, continuous efforts have been made to discover novel therapeutic inhibitors of TLRs and RAGE to treat inflammatory disorders. A recent study by our group has demonstrated that trimebutine, a spasmolytic drug, suppresses the high mobility group box 1‒RAGE signaling that is associated with triggering proinflammatory signaling pathways in macrophages. Our present work showed that trimebutine suppresses interleukin-6 (IL-6) production in lipopolysaccharide (LPS, a stimulant of TLR4)-stimulated macrophages of RAGE-knockout mice. In addition, trimebutine suppresses the LPS-induced production of various proinflammatory cytokines and chemokines in mouse macrophage-like RAW264.7 cells. Importantly, trimebutine suppresses IL-6 production induced by TLR2-and TLR7/8/9 stimulants. Furthermore, trimebutine greatly reduces mortality in a mouse model of LPS-induced sepsis. Studies exploring the action mechanism of trimebutine revealed that it inhibits the LPS-induced activation of IL-1 receptor-associated kinase 1 (IRAK1), and the subsequent activations of extracellular signal-related kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and nuclear factor-κB (NF-κB). These findings suggest that trimebutine exerts anti-inflammatory effects on TLR signaling by downregulating IRAK1‒ERK1/2‒JNK pathway and NF-κB activity, thereby indicating the therapeutic potential of trimebutine in inflammatory diseases. Therefore, trimebutine can be a novel anti-inflammatory drug-repositioning candidate and may provide an important scaffold for designing more effective dual anti-inflammatory drugs that target TLR/RAGE signaling.


Assuntos
Anti-Inflamatórios/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Trimebutina/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Quimiocinas/metabolismo , Feminino , Interleucina-6/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células RAW 264.7 , Receptor para Produtos Finais de Glicação Avançada/deficiência , Receptor para Produtos Finais de Glicação Avançada/genética , Sepse/induzido quimicamente , Sepse/tratamento farmacológico , Trimebutina/uso terapêutico
3.
Biochem Biophys Res Commun ; 533(4): 1155-1161, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33041002

RESUMO

We previously identified papaverine as an inhibitor of receptor for advanced glycation end-products (RAGE) and showed its suppressive effect on high mobility group box 1 (HMGB1)-mediated responses to inflammation. Here, we found trimebutine to be a 3D pharmacophore mimetics of papaverine. Trimebutine was revealed to have more potent suppressive effects on HMGB1-induced production of pro-inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-α in macrophage-like RAW264.7 cells and mouse bone marrow primarily differentiated macrophages than did papaverine. However, the inhibitory effect of trimebutine on the interaction of HMGB1 and RAGE was weaker than that of papaverine. Importantly, mechanism-of-action analyses revealed that trimebutine strongly inhibited the activation of RAGE downstream inflammatory signaling pathways, especially the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), which are mediator/effector kinases recruited to the intracellular domain of RAGE. Consequently, the activation of Jun amino terminal kinase, which is an important effector kinase for the up-regulation of pro-inflammatory cytokines, was inhibited. Taken together, these results suggest that trimebutine may exert its suppressive effect on the HMGB1-RAGE inflammatory signal pathways by strongly blocking the recruitment of ERK1/2 to the intracellular tail domain of RAGE in addition to its weak inhibition of the extracellular interaction of HMGB1 with RAGE. Thus, trimebutine may provide a unique scaffold for the development of novel dual inhibitors of RAGE for inflammatory diseases.


Assuntos
Proteína HMGB1/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Trimebutina/farmacologia , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Janus Quinases/antagonistas & inibidores , Macrófagos , Camundongos , Papaverina/química , Papaverina/farmacologia , Células RAW 264.7 , Trimebutina/química , Fator de Necrose Tumoral alfa/metabolismo
4.
Arch Biochem Biophys ; 506(2): 188-93, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21093407

RESUMO

High mobility group box 1 (HMGB1) initially identified as a non-histone chromosomal protein, which mainly functions as chromatin structure and transcriptional regulation, has been recently reported to be secreted into extracellular milieu in necrosis and apoptosis, and act as a proinflammatory mediator. However, the mechanism by which apoptotic cells release HMGB1 is not clear. In this study, we found that staurosporine (apoptosis-inducer)-induced HMGB1 release was associated with nucleosomal DNA fragmentation catalyzed by caspase-activated DNase (CAD) in WEHI-231 cells. Importantly, this event was effectively attenuated by the treatment of a pan-caspase inhibitor, Z-VAD-fmk, and by the inhibition of CAD-mediated DNA fragmentation by the expression of caspase-resistant inhibitor of CAD (ICAD-CR). In WEHI-231/ICAD-CR and WEHI-231/Puro cells, DNase γ-catalyzed nucleosomal DNA fragmentation occurred by anti-IgM antibody treatment was critical for HMGB1 release. Furthermore, in DNase γ stably-expressing HeLa S3 cells (HeLa S3/γ), the release of HMGB1 accompanied with nucleosomal DNA fragmentation was more apparent than that in parental HeLa S3 cells in which DNA fragmentation was scarcely observed. Taken together, these date suggest that nucleosomal DNA fragmentation catalyzed by CAD or DNase γ plays a pivotal role in HMGB1 release.


Assuntos
Apoptose/fisiologia , Fragmentação do DNA , Proteína HMGB1/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Caspases/metabolismo , Linhagem Celular , Inibidores de Cisteína Proteinase/farmacologia , Fragmentação do DNA/efeitos dos fármacos , Desoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Células HeLa , Humanos , Camundongos , Nucleossomos/efeitos dos fármacos , Nucleossomos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estaurosporina/farmacologia
5.
Bioorg Med Chem ; 19(1): 168-71, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21167721

RESUMO

High mobility group box1 (HMGB1) is a non-histone chromatin chromosomal protein playing an important role in chromatin architecture and transcriptional regulation. Recently, HMGB1 has been shown to be secreted into extracellular milieu in necrosis and apoptosis, and involved in inflammatory responses. However, the mechanism by which apoptotic cells release HMGB1 is unclear. In this study, to investigate the mechanism of HMGB1 release, we searched inhibitors of HMGB1 release from apoptotic cells. As a result, three compounds, 4-(4,6-dichloro-[1,3,5]-triazin-2-ylamino)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-benzoic acid (DR396), Pontacyl Violet 6R (PV6R), and Fmoc-D-Cha-OH (FDCO) in our in-house chemical library were found to inhibit HMGB1 release from staurosporine (STS)-induced apoptotic HeLa S3 cells. Interestingly, these three compounds have been previously categorized into apoptotic DNase γ inhibitors. Therefore, we examined whether apoptotic nucleosomal DNA fragmentation is involved in the release of HMGB1 during apoptosis. Expectedly, DR396, which is the most potent and specific inhibitor of DNase γ, was found to almost completely inhibit both HMGB1 release and internucleosomal DNA cleavage in HeLa S3 cells transfected with DNase γ expression vector and stably expressing DNase γ (HeLa S3/γ cells). These results clearly suggest that nucleosomal DNA fragmentation catalyzed by DNase γ is critical in the release of HMGB1 from apoptotic cells.


Assuntos
Apoptose/efeitos dos fármacos , Endodesoxirribonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Fluoresceínas/farmacologia , Triazinas/farmacologia , Proteína HMGB1/metabolismo , Células HeLa , Humanos
6.
J Fungi (Basel) ; 7(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809181

RESUMO

To evaluate the combination effects of anti-onychomycosis drugs, the minimum inhibitory concentrations of topical (efinaconazole, luliconazole, and tavaborole) and oral (itraconazole and terbinafine) drugs for Trichophyton rubrum and Trichophyton interdigitale (8 each, with a total of 16 strains) were determined using the microdilution checkerboard technique based on the Clinical and Laboratory Standard Institute guidelines. No antagonism was observed between the topical and oral drugs against all the tested strains. Efinaconazole with terbinafine exerted a synergistic effect on 43.8% of the strains tested (7/16 strains) and efinaconazole with itraconazole on 12.5% (2/16 strains). Conversely, luliconazole showed no synergistic effect with terbinafine but was synergistically effective with itraconazole against 31.3% of the strains (5/16 strains). Tavaborole showed no synergistic effect with terbinafine and was synergistically effective with itraconazole against 18.8% of the strains (3/16 strains). The results suggest that a combination of topical and oral drugs could be a potential clinical option for onychomycosis treatment, and overall, the efinaconazole and oral drug combination would be the most advantageous among the tested combinations.

7.
J Fungi (Basel) ; 3(4)2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29371574

RESUMO

Use of oral antifungals in the treatment of onychomycosis is commonplace; but their use can be limited by safety and patient concerns. Due to their broader safety margins, topical antifungals (efinaconazole, tavaborole, and ciclopirox) are a useful option in the treatment of mild-to-moderate onychomycosis in the USA, but their antifungal activity has yet to be directly compared. This study aims to identify important factors contributing to in vivo efficacies of the three topical antifungals. Minimum inhibitory concentrations (MICs) were determined by Clinical and Laboratory Standards Institute (CLSI) M38-A2 broth microdilution. The MIC90 values of efinaconazole, tavaborole, and ciclopirox for T. rubrum were 0.0078, 8.0, and 0.50 µg/mL, respectively. The MIC90 values for T. mentagrophytes were 0.016, 8.0, and 0.50 µg/mL, respectively. Efinaconazole showed potent fungicidal activity in keratin-containing medium, whereas tavaborole was fungistatic, and ciclopirox not active. In the guinea pig model of onychomycosis, the therapeutic efficacy of efinaconazole was superior to those of tavaborole and ciclopirox. This study suggests that not only fungistatic activity (MIC), but also fungicidal activity in the presence of keratin, is an important factor contributing to the in vivo efficacy of topical antifungal drugs against onychomycosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA