Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO Rep ; 21(10): e47533, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33252195

RESUMO

Naïve pluripotency can be established in human pluripotent stem cells (hPSCs) by manipulation of transcription factors, signaling pathways, or a combination thereof. However, differences exist in the molecular and functional properties of naïve hPSCs generated by different protocols, which include varying similarities with pre-implantation human embryos, differentiation potential, and maintenance of genomic integrity. We show here that short treatment with two chemical agonists (2a) of nuclear receptors, liver receptor homologue-1 (LRH-1) and retinoic acid receptor gamma (RAR-γ), along with 2i/LIF (2a2iL) induces naïve-like pluripotency in human cells during reprogramming of fibroblasts, conversion of pre-established hPSCs, and generation of new cell lines from blastocysts. 2a2iL-hPSCs match several defined criteria of naïve-like pluripotency and contribute to human-mouse interspecies chimeras. Activation of TGF-ß signaling is instrumental for acquisition of naïve-like pluripotency by the 2a2iL induction procedure, and transient activation of TGF-ß signaling substitutes for 2a to generate naïve-like hPSCs. We reason that 2a2iL-hPSCs are an easily attainable system to evaluate properties of naïve-like hPSCs and for various applications.


Assuntos
Células-Tronco Pluripotentes , Animais , Blastocisto , Diferenciação Celular , Linhagem Celular , Humanos , Camundongos , Receptores Citoplasmáticos e Nucleares/genética , Receptores do Ácido Retinoico , Receptor gama de Ácido Retinoico
2.
Biochem Cell Biol ; 91(2): 116-22, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23527641

RESUMO

Gene activation of HOX clusters is an early event in embryonic development. These genes are highly expressed and active in the vertebrate nervous system. Based on the presence of retinoic acid response elements (RAREs) in the regulatory region of many of the HOX genes, it is deduced that retinoic acid (RA) can influence epigenetic regulation and consequently the expression pattern of HOX during RA-induced differentiation of embryonic model systems. In this investigation, the expression level as well as the epigenetic regulation of several HOX genes of the 4 A-D clusters was analyzed in human embryonic stem cells, and also through their neural induction, in the presence and absence of RA. Expression analysis data significantly showed increased mRNA levels of all examined HOX genes in the presence of RA. Epigenetic analysis of the HOX gene regulatory regions also showed a significant decrease in methylation of histone H3K27 parallel to an absolute preferential incorporation of the demethylase UTX rather than JMJD3 in RA-induced neural differentiated cells. This finding clearly showed the functional role of UTX in epigenetic alteration of HOX clusters during RA-induced neural differentiation; the activity could not be detectable for the demethylase JMJD3 during this developmental process.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Histona Desmetilases/genética , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Neurônios/efeitos dos fármacos , Proteínas Nucleares/genética , Tretinoína/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Histona Desmetilases/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Elementos de Resposta
3.
Sci Rep ; 9(1): 15467, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664077

RESUMO

Injury to podocytes is a principle cause of initiation and progression of both immune and non-immune mediated glomerular diseases that result in proteinuria and decreased function of the kidney. Current advances in regenerative medicine shed light on the therapeutic potential of cell-based strategies for treatment of such disorders. Thus, there is hope that generation and transplantation of podocytes from induced pluripotent stem cells (iPSCs), could potentially be used as a curative treatment for glomerulonephritis caused by podocytes injury and loss. Despite several reports on the generation of iPSC-derived podocytes, there are rare reports about successful use of these cells in animal models. In this study, we first generated a model of anti-podocyte antibody-induced heavy proteinuria that resembled human membranous nephropathy and was characterized by the presence of sub-epithelial immune deposits and podocytes loss. Thereafter, we showed that transplantation of functional iPSC-derived podocytes following podocytes depletion results in recruitment of iPSC-derived podocytes within the damaged glomerulus, and leads to attenuation of proteinuria and histological alterations. These results provided evidence that application of iPSCs-derived renal cells could be a possible therapeutic strategy to favorably influence glomerular diseases outcomes.


Assuntos
Glomerulonefrite Membranosa/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Proteinúria/terapia , Transplante de Células-Tronco , Animais , Modelos Animais de Doenças , Glomerulonefrite Membranosa/complicações , Camundongos , Proteinúria/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA