Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 187, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300345

RESUMO

Cyclic ß-1,2-glucan synthase (CGS) is a key enzyme in production of cyclic ß-1,2-glucans (CßGs) which are involved in bacterial infection or symbiosis to host organisms. Nevertheless, a mechanism of cyclization, the final step in the CGS reaction, has not been fully understood. Here we performed functional and structural analyses of the cyclization domain of CGS alone from Thermoanaerobacter italicus (TiCGSCy). We first found that ß-glucosidase-resistant compounds are produced by TiCGSCy with linear ß-1,2-glucans as substrates. The 1H-NMR analysis revealed that these products are CßGs. Next, action pattern analyses using ß-1,2-glucooligosaccharides revealed a unique reaction pattern: exclusive transglycosylation without hydrolysis and a hexasaccharide being the minimum length of the substrate. These analyses also showed that longer substrate ß-1,2-glucooligosaccharides are preferred, being consistent with the fact that CGSs generally produce CßGs with degrees of polymerization of around 20. Finally, the overall structure of the cyclization domain of TiCGSCy was found to be similar to those of ß-1,2-glucanases in phylogenetically different groups. Meanwhile, the identified catalytic residues indicated clear differences in the reaction pathways between these enzymes. Overall, we propose a novel reaction mechanism of TiCGSCy. Thus, the present group of CGSs defines a new glycoside hydrolase family, GH189. KEY POINTS: • It was clearly evidenced that cyclization domain alone produces cyclic ß-1,2-glucans. • The domain exclusively catalyzes transglycosylation without hydrolysis. • The present catalytic domain defines as a new glycoside hydrolase family 189.


Assuntos
Glucanos , Glicosídeo Hidrolases , beta-Glucanas , Ciclização , Catálise
2.
J Biol Chem ; 298(3): 101606, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065074

RESUMO

The IALB_1185 protein, which is encoded in the gene cluster for endo-ß-1,2-glucanase homologs in the genome of Ignavibacterium album, is a glycoside hydrolase family (GH) 35 protein. However, most known GH35 enzymes are ß-galactosidases, which is inconsistent with the components of this gene cluster. Thus, IALB_1185 is expected to possess novel enzymatic properties. Here, we showed using recombinant IALB_1185 that this protein has glycosyltransferase activity toward ß-1,2-glucooligosaccharides, and that the kinetic parameters for ß-1,2-glucooligosaccharides are not within the ranges for general GH enzymes. When various aryl- and alkyl-glucosides were used as acceptors, glycosyltransfer products derived from these acceptors were subsequently detected. Kinetic analysis further revealed that the enzyme has wide aglycone specificity regardless of the anomer, and that the ß-1,2-linked glucose dimer sophorose is an appropriate donor. In the complex of wild-type IALB_1185 with sophorose, the electron density of sophorose was clearly observed at subsites -1 and +1, whereas in the E343Q mutant-sophorose complex, the electron density of sophorose was clearly observed at subsites +1 and +2. This observation suggests that binding at subsites -1 and +2 competes through Glu102, which is consistent with the preference for sophorose as a donor and unsuitability of ß-1,2-glucooligosaccharides as acceptors. A pliable hydrophobic pocket that can accommodate various aglycone moieties was also observed in the complex structures with various glucosides. Overall, our biochemical and structural data are indicative of a novel enzymatic reaction. We propose that IALB_1185 be redefined ß-1,2-glucooligosaccharide:d-glucoside ß-d-glucosyltransferase as a systematic name and ß-1,2-glucosyltransferase as an accepted name.


Assuntos
Glucosídeos , Glicosiltransferases , Glucosídeos/química , Glucosídeos/metabolismo , Glucosiltransferases/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Cinética , Especificidade por Substrato
3.
Anal Biochem ; 632: 114366, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509443

RESUMO

ß-(1 â†’ 2)-Glucans can be synthesized by 1,2-ß-oligoglucan phosphorylase using ß-(1 â†’ 2)-glucooligosaccharides as acceptors and α-d-glucose 1-phosphate as a donor. Using phosphorolysis of sucrose as a source of α-d-glucose 1-phosphate, we generated ß-(1 â†’ 2)-glucans with degrees of polymerization (DPs) up to approximately 280. Average DPs up to approximately 1000 were obtained using ß-(1 â†’ 2)-glucan with average DP of 160 as an acceptor and pure α-d-glucose 1-phosphate as a donor. A colorimetric assay of the ß-glucosidase activity against the ß-(1 â†’ 2)-glucan products was used to determine their DPs.


Assuntos
Glucanos/metabolismo , beta-Glucosidase/metabolismo , Glucanos/química , Polimerização
4.
J Biol Chem ; 294(19): 7942-7965, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30926603

RESUMO

endo-ß-1,2-Glucanase (SGL) is an enzyme that hydrolyzes ß-1,2-glucans, which play important physiological roles in some bacteria as a cyclic form. To date, no eukaryotic SGL has been identified. We purified an SGL from Talaromyces funiculosus (TfSGL), a soil fungus, to homogeneity and then cloned the complementary DNA encoding the enzyme. TfSGL shows no significant sequence similarity to any known glycoside hydrolase (GH) families, but shows significant similarity to certain eukaryotic proteins with unknown functions. The recombinant TfSGL (TfSGLr) specifically hydrolyzed linear and cyclic ß-1,2-glucans to sophorose (Glc-ß-1,2-Glc) as a main product. TfSGLr hydrolyzed reducing-end-modified ß-1,2-gluco-oligosaccharides to release a sophoroside with the modified moiety. These results indicate that TfSGL is an endo-type enzyme that preferably releases sophorose from the reducing end of substrates. Stereochemical analysis demonstrated that TfSGL is an inverting enzyme. The overall structure of TfSGLr includes an (α/α)6 toroid fold. The substrate-binding mode was revealed by the structure of a Michaelis complex of an inactive TfSGLr mutant with a ß-1,2-glucoheptasaccharide. Mutational analysis and action pattern analysis of ß-1,2-gluco-oligosaccharide derivatives revealed an unprecedented catalytic mechanism for substrate hydrolysis. Glu-262 (general acid) indirectly protonates the anomeric oxygen at subsite -1 via the 3-hydroxy group of the Glc moiety at subsite +2, and Asp-446 (general base) activates the nucleophilic water via another water. TfSGLr is apparently different from a GH144 SGL in the reaction and substrate recognition mechanism based on structural comparison. Overall, we propose that TfSGL and closely-related enzymes can be classified into a new family, GH162.


Assuntos
Proteínas Fúngicas/química , Glicosídeo Hidrolases/química , Microbiologia do Solo , Talaromyces/enzimologia , Relação Estrutura-Atividade , Especificidade por Substrato
5.
J Biol Chem ; 293(23): 8812-8828, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29678880

RESUMO

ß-1,2-Glucans are bacterial carbohydrates that exist in cyclic or linear forms and play an important role in infections and symbioses involving Gram-negative bacteria. Although several ß-1,2-glucan-associated enzymes have been characterized, little is known about how ß-1,2-glucan and its shorter oligosaccharides (Sop n s) are captured and imported into the bacterial cell. Here, we report the biochemical and structural characteristics of the Sop n -binding protein (SO-BP, Lin1841) associated with the ATP-binding cassette (ABC) transporter from the Gram-positive bacterium Listeria innocua Calorimetric analysis revealed that SO-BP specifically binds to Sop n s with a degree of polymerization of 3 or more, with Kd values in the micromolar range. The crystal structures of SO-BP in an unliganded open form and in closed complexes with tri-, tetra-, and pentaoligosaccharides (Sop3-5) were determined to a maximum resolution of 1.6 Å. The binding site displayed shape complementarity to Sop n , which adopted a zigzag conformation. We noted that water-mediated hydrogen bonds and stacking interactions play a pivotal role in the recognition of Sop3-5 by SO-BP, consistent with its binding thermodynamics. Computational free-energy calculations and a mutational analysis confirmed that interactions with the third glucose moiety of Sop n s are significantly responsible for ligand binding. A reduction in unfavorable changes in binding entropy that were in proportion to the lengths of the Sop n s was explained by conformational entropy changes. Phylogenetic and sequence analyses indicated that SO-BP ABC transporter homologs, glycoside hydrolases, and other related proteins are co-localized in the genomes of several bacteria. This study may improve our understanding of bacterial ß-1,2-glucan metabolism and promote the discovery of unidentified ß-1,2-glucan-associated proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria/metabolismo , Polissacarídeos Bacterianos/metabolismo , beta-Glucanas/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia por Raios X , Listeria/química , Simulação de Dinâmica Molecular , Polissacarídeos Bacterianos/química , Ligação Proteica , Conformação Proteica , Termodinâmica , beta-Glucanas/química
6.
Biosci Biotechnol Biochem ; 83(10): 1867-1874, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31189457

RESUMO

A large amount of ß-1,2-glucan was produced enzymatically from quite a small amount of sophorose as an acceptor material through three synthesis steps using a sucrose phosphorylase and a 1,2-ß-oligoglucan phosphorylase. The first synthesis step was performed in a 200 µL of a reaction solution containing 5 mM sophorose and 1.0 M sucrose. ß-1,2-Glucan in a part of the resultant solution was hydrolyzed to ß-1,2-glucooligosaccharides by a ß-1,2-glucanase. The second synthesis was performed in 25 times the volume for the first synthesis. The hydrolysate solution (1% volume of the reaction solution) was used as an acceptor. After treatment with the ß-1,2-glucanase again, the third synthesis was performed 200 times the volume for the second synthesis (1 L). The reaction yield of ß-1,2-glucan at each synthesis was 93%, 76% and 91%. Finally, more than 140 g of ß-1,2-glucan was synthesized using approximately 20 µg of sophorose as the starting acceptor material. Abbreviations: DPs: degrees of polymerization; SOGP: 1,2-ß-oligoglucan phosphorylase; Sopns: ß-1,2-glucooligosaccharides with DP of n; Glc1P: α-glucose 1-phosphate; SucP: sucrose phosphorylase from Bifidobacterium longum subsp. longum; SGL: ß-1,2-glucanase; CaSGL: Chy400_4174 protein; TLC: thin layer chromatography; GOPOD: glucose oxidase/peroxidase; PGM: phosphoglucomutase; G6PDH: glucose 6-phosphate dehydrogenase.


Assuntos
Glucanos/química , beta-Glucanas/síntese química , Glucosiltransferases/química , Hidrólise , Cinética , Fosfatos/química , Especificidade por Substrato
7.
Biochemistry ; 57(37): 5388-5406, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30149697

RESUMO

d-Lactate dehydrogenases (d-LDHs) from Fusobacterium nucleatum (FnLDH) and Escherichia coli (EcLDH) exhibit positive cooperativity in substrate binding, and the Pseudomonas aeruginosa enzyme (PaLDH) shows negatively cooperative substrate binding. The apo and ternary complex structures of FnLDH and PaLDH have been determined together with the apo-EcLDH structure. The three enzymes consistently form homotetrameric structures with three symmetric axes, the P-, Q-, and R-axes, unlike Lactobacillus d-LDHs, P-axis-related dimeric enzymes, although apo-FnLDH and EcLDH form asymmetric and distorted quaternary structures. The tetrameric structure allows apo-FnLDH and EcLDH to form wide intersubunit contact surfaces between the opened catalytic domains of the two Q-axis-related subunits in coordination with their asymmetric and distorted quaternary structures. These contact surfaces comprise intersubunit hydrogen bonds and hydrophobic interactions and likely prevent the domain closure motion during initial substrate binding. In contrast, apo-PaLDH possesses a highly symmetrical quaternary structure and partially closed catalytic domains that are favorable for initial substrate binding and forms virtually no intersubunit contact surface between the catalytic domains, which present their negatively charged surfaces to each other at the subunit interface. Complex FnLDH and PaLDH possess highly symmetrical quaternary structures with closed forms of the catalytic domains, which are separate from each other at the subunit interface. Structure-based mutations successfully converted the three enzymes to their dimeric forms, which exhibited no significant cooperativity in substrate binding. These observations indicate that the three enzymes undergo typical sequential allosteric transitions to exhibit their distinctive allosteric functions through the tetrameric structures.


Assuntos
Escherichia coli/enzimologia , Fusobacterium nucleatum/enzimologia , Lactato Desidrogenases/química , Pseudomonas aeruginosa/enzimologia , Regulação Alostérica , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Homologia de Sequência
8.
Biochemistry ; 57(26): 3849-3860, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29763309

RESUMO

ß-1,2-Glucan is a polysaccharide produced mainly by some Gram-negative bacteria as a symbiosis and infectious factor. We recently identified endo-ß-1,2-glucanase from Chitinophaga pinensis ( CpSGL) as an enzyme comprising a new family. Here, we report the characteristics and crystal structure of a CpSGL homologue from Parabacteroides distasonis, an intestinal bacterium (BDI_3064 protein), which exhibits distinctive properties of known ß-1,2-glucan-degrading enzymes. BDI_3064 hydrolyzed linear ß-1,2-glucan and ß-1,2-glucooligosaccharides with degrees of polymerization (DPs) of ≥4 to produce sophorose specifically but did not hydrolyze cyclic ß-1,2-glucan. This result indicates that BDI_3064 is a new exo-type enzyme. BDI_3064 also produced sophorose from ß-1,2-glucooligosaccharide analogues that have a modified reducing end, indicating that BDI_3064 acts on its substrates from the nonreducing end. The crystal structure showed that BDI_3064 possesses additional N-terminal domains 1 and 2, unlike CpSGL. Superimposition of BDI_3064 and CpSGL complexed with ligands showed that R93 in domain 1 overlapped subsite -3 in CpSGL. Docking analysis involving a ß-1,2-glucooligosaccharide with DP4 showed that R93 completely blocks the nonreducing end of the docked ß-1,2-glucooligosaccharide. This indicates that BDI_3064 employs a distinct mechanism of recognition at the nonreducing end of substrates to act as an exo-type enzyme. Thus, we propose 2-ß-d-glucooligosaccharide sophorohydrolase (nonreducing end) as a systematic name for BDI_3064.


Assuntos
Proteínas de Bactérias/química , Bacteroidetes/enzimologia , Glucosidases/química , Simulação de Acoplamento Molecular , Oligossacarídeos/química , beta-Glucanas/química , Cristalografia por Raios X , Domínios Proteicos
9.
J Biol Chem ; 292(18): 7487-7506, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28270506

RESUMO

ß-1,2-Glucan is an extracellular cyclic or linear polysaccharide from Gram-negative bacteria, with important roles in infection and symbiosis. Despite ß-1,2-glucan's importance in bacterial persistence and pathogenesis, only a few reports exist on enzymes acting on both cyclic and linear ß-1,2-glucan. To this end, we purified an endo-ß-1,2-glucanase to homogeneity from cell extracts of the environmental species Chitinophaga arvensicola, and an endo-ß-1,2-glucanase candidate gene (Cpin_6279) was cloned from the related species Chitinophaga pinensis The Cpin_6279 protein specifically hydrolyzed linear ß-1,2-glucan with polymerization degrees of ≥5 and a cyclic counterpart, indicating that Cpin_6279 is an endo-ß-1,2-glucananase. Stereochemical analysis demonstrated that the Cpin_6279-catalyzed reaction proceeds via an inverting mechanism. Cpin_6279 exhibited no significant sequence similarity with known glycoside hydrolases (GHs), and thus the enzyme defines a novel GH family, GH144. The crystal structures of the ligand-free and complex forms of Cpin_6279 with glucose (Glc) and sophorotriose (Glc-ß-1,2-Glc-ß-1,2-Glc) determined up to 1.7 Å revealed that it has a large cavity appropriate for polysaccharide degradation and adopts an (α/α)6-fold slightly similar to that of GH family 15 and 8 enzymes. Mutational analysis indicated that some of the highly conserved acidic residues in the active site are important for catalysis, and the Cpin_6279 active-site architecture provided insights into the substrate recognition by the enzyme. The biochemical characterization and crystal structure of this novel GH may enable discovery of other ß-1,2-glucanases and represent a critical advance toward elucidating structure-function relationships of GH enzymes.


Assuntos
Proteínas de Bactérias/química , Bacteroidetes/enzimologia , Celulase/química , Proteínas de Bactérias/isolamento & purificação , Catálise , Domínio Catalítico , Celulase/isolamento & purificação , Cristalografia por Raios X
10.
Anal Biochem ; 560: 1-6, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30149026

RESUMO

A colorimetric determination method measuring the reducing ends of sugars is usually used for quantitative evaluation of polysaccharide-degrading activity of endo-type enzymes. However, no appropriate colorimetric method has been established for enzymatic assay of ß-1,2-glucanases, which produce ß-1,2-glucooligosaccharides from ß-1,2-glucans. The Anthon-MBTH method has been potentially the most adaptable for color development of ß-1,2-glucooligosaccharides among various known colorimetric methods for detecting the reducing power of oligosaccharides, since the difference between sophorose and other ß-1,2-glucooligosaccharides in absorbance is relatively small. Almost the same color development was obtained for ß-1,2-glucooligosaccharides when the heating time with the Anthon-MBTH method was changed. The kind of base and concentration of dithiothreitol did not markedly affect the color development. Most buffer components, salts and a chelating reagent used for usual enzymatic experiments did not inhibit color development. Furthermore, assay was performed successfully for a ß-1,2-glucanase using the modified MBTH method.


Assuntos
Proteínas de Bactérias/química , Ensaios Enzimáticos/métodos , Glicosídeo Hidrolases/química , beta-Glucanas/análise , Bactérias/enzimologia , Bactérias/metabolismo , Benzotiazóis/química , Chlorella/enzimologia , Chlorella/metabolismo , Colorimetria/métodos , Glucanos/química , Hidrazonas/química , Especificidade por Substrato
11.
Biochem Biophys Res Commun ; 486(3): 665-670, 2017 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-28327357

RESUMO

Enterococcus faecium NAD-dependent d-mandelate dehydrogenase (d-ManDH) belongs to a ketopantoate reductase (KPR)-related d-2-hydroxyacid dehydrogenase family, and exhibits broad substrate specificity toward bulky hydrophobic 2-ketoacids, preferring C3-branched substrates. The ternary complex structure of d-ManDH with NADH and anilino(oxo)acetate (AOA) revealed that the substrate binding induces a shear motion of the N-terminal domain along the C-terminal domain, following the hinge motion induced by the NADH binding, and allows the bound NADH molecule to form favorable interactions with a 2-ketoacid substrate. d-ManDH possesses a sufficiently wide pocket that accommodates the C3 branched side chains of substrates like KPR, but unlike the pocket of KPR, the pocket of d-ManDH comprises an entirely hydrophobic surface and an expanded space, in which the AOA benzene is accommodated. The expanded space mostly comprises a mobile loop structure, which likely modulates the shape and size of the space depending on the substrate.


Assuntos
Acetatos/química , Oxirredutases do Álcool/química , Compostos de Anilina/química , Proteínas de Bactérias/química , Enterococcus faecium/química , NAD/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Enterococcus faecium/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , NAD/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato , Termodinâmica
12.
Adv Exp Med Biol ; 925: 117-145, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27815924

RESUMO

Many bacterial L-lactate dehydrogenases (LDH) are allosteric enzymes, and usually activated by fructose 1,6-bisphosphate (FBP) and often also by substrate pyruvate. The active and inactive state structures demonstrate that Thermus caldophilus, Lactobacillus casei, and Bifidobacterium longum LDHs consistently undergo allosteric transition according to Monod-Wyman-Changeux model, where the active (R) and inactive (T) states of the enzymes coexist in an allosteric equilibrium (pre-existing equilibrium) independently of allosteric effectors. The three enzymes consistently take on open and closed conformations of the homotetramers for the T and R states, coupling the quaternary structural changes with the structural changes in binding sites for substrate and FBP though tertiary structural changes. Nevertheless, the three enzymes undergo markedly different structural changes from one another, indicating that there is a high variety in the allosteric machineries of bacterial LDHs. L. casei LDH undergoes the largest quaternary structural change in the three enzymes, and regulates its catalytic activity though a large linkage frame for allosteric motion. In contrast, T. caldophilus LDH exhibits the simplest allosteric motion in the three enzymes, involving a simple mobile structural core for the allosteric motion. TcLDH likely mediates its allosteric equilibrium mostly through electrostatic repulsion within the protein molecule, providing an insight for regulation machineries in bacterial allosteric LDHs.


Assuntos
Proteínas de Bactérias/química , Bifidobacterium longum/enzimologia , Frutosedifosfatos/química , L-Lactato Desidrogenase/química , Lacticaseibacillus casei/enzimologia , Ácido Pirúvico/química , Thermus/enzimologia , Regulação Alostérica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium longum/química , Bifidobacterium longum/genética , Sítios de Ligação , Frutosedifosfatos/metabolismo , Expressão Gênica , Cinética , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lacticaseibacillus casei/química , Lacticaseibacillus casei/genética , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ácido Pirúvico/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade , Especificidade por Substrato , Thermus/química , Thermus/genética
13.
J Biol Chem ; 289(45): 31550-64, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25258319

RESUMO

For Thermus caldophilus L-lactate dehydrogenase (TcLDH), fructose 1,6-bisphosphate (FBP) reduced the pyruvate S(0.5) value 10(3)-fold and increased the V(max) value 4-fold at 30 °C and pH 7.0, indicating that TcLDH has a much more T state-sided allosteric equilibrium than Thermus thermophilus L-lactate dehydrogenase, which has only two amino acid replacements, A154G and H179Y. The inactive (T) and active (R) state structures of TcLDH were determined at 1.8 and 2.0 Å resolution, respectively. The structures indicated that two mobile regions, MR1 (positions 172-185) and MR2 (positions 211-221), form a compact core for allosteric motion, and His(179) of MR1 forms constitutive hydrogen bonds with MR2. The Q4(R) mutation, which comprises the L67E, H68D, E178K, and A235R replacements, increased V(max) 4-fold but reduced pyruvate S(0.5) only 5-fold in the reaction without FBP. In contrast, the P2 mutation, comprising the R173Q and R216L replacements, did not markedly increase V(max), but 10(2)-reduced pyruvate S(0.5), and additively increased the FBP-independent activity of the Q4(R) enzyme. The two types of mutation consistently increased the thermal stability of the enzyme. The MR1-MR2 area is a positively charged cluster, and its center approaches another positively charged cluster (N domain cluster) across the Q-axis subunit interface by 5 Å, when the enzyme undergoes the T to R transition. Structural and kinetic analyses thus revealed the simple and unique allosteric machinery of TcLDH, where the MR1-MR2 area pivotally moves during the allosteric motion and mediates the allosteric equilibrium through electrostatic repulsion within the protein molecule.


Assuntos
Proteínas de Bactérias/química , L-Lactato Desidrogenase/química , Thermus/enzimologia , Regulação Alostérica , Sítio Alostérico , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Frutosedifosfatos/química , Concentração de Íons de Hidrogênio , Ácido Láctico/química , Dados de Sequência Molecular , Movimento (Física) , Mutação , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ácido Pirúvico/química , Homologia de Sequência de Aminoácidos , Eletricidade Estática
14.
Biochem Biophys Res Commun ; 439(1): 109-14, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23954635

RESUMO

D-Mandelate dehydrogenases (D-ManDHs), belonging to a new d-2-hydroxyacid dehydrogenase family, catalyze the conversion between benzoylformate and d-mandelate using NAD as a coenzyme. We determined the first D-ManDH structure, that of ManDH2 from Enterococcus faecalis IAM10071. The overall structure showed ManDH2 has a similar fold to 2-ketopantoate reductase (KPR), which catalyzes the conversion of 2-ketopantoate to d-pantoate using NADP as a coenzyme. They share conserved catalytic residues, indicating ManDH2 has the same reaction mechanism as KPR. However, ManDH2 exhibits significant structural variations in the coenzyme and substrate binding sites compared to KPR. These structural observations could explain their different coenzyme and substrate specificities.


Assuntos
Oxirredutases do Álcool/química , Proteínas de Bactérias/química , Enterococcus faecalis/enzimologia , Sequência de Aminoácidos , Coenzimas/química , Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
15.
Sci Immunol ; 7(72): eabl7209, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35749514

RESUMO

Long-term senescent cells exhibit a secretome termed the senescence-associated secretory phenotype (SASP). Although the mechanisms of SASP factor induction have been intensively studied, the release mechanism and how SASP factors influence tumorigenesis in the biological context remain unclear. In this study, using a mouse model of obesity-induced hepatocellular carcinoma (HCC), we identified the release mechanism of SASP factors, which include interleukin-1ß (IL-1ß)- and IL-1ß-dependent IL-33, from senescent hepatic stellate cells (HSCs) via gasdermin D (GSDMD) amino-terminal-mediated pore. We found that IL-33 was highly induced in senescent HSCs in an IL-1ß-dependent manner in the tumor microenvironment. The release of both IL-33 and IL-1ß was triggered by lipoteichoic acid (LTA), a cell wall component of gut microbiota that was transferred and accumulated in the liver tissue of high-fat diet-fed mice, and the release of these factors was mediated through cell membrane pores formed by the GSDMD amino terminus, which was cleaved by LTA-induced caspase-11. We demonstrated that IL-33 release from HSCs promoted HCC development via the activation of ST2-positive Treg cells in the liver tumor microenvironment. The accumulation of GSDMD amino terminus was also detected in HSCs from human NASH-associated HCC patients, suggesting that similar mechanism could be involved in a certain type of human HCC. These results uncover a release mechanism for SASP factors from sensitized senescent HSCs in the tumor microenvironment, thereby facilitating obesity-associated HCC progression. Furthermore, our findings highlight the therapeutic potential of inhibitors of GSDMD-mediated pore formation for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Senescência Celular , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Interleucina-33/metabolismo , Camundongos , Obesidade/complicações , Obesidade/metabolismo , Microambiente Tumoral
16.
Proteins ; 78(3): 681-94, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19787773

RESUMO

Lactobacillus casei L-lactate dehydrogenase (LCLDH) is activated through the homotropic and heterotropic activation effects of pyruvate and fructose 1,6-bisphosphate (FBP), respectively, and exhibits unusually high pH-dependence in the allosteric effects of these ligands. The active (R) and inactive (T) state structures of unliganded LCLDH were determined at 2.5 and 2.6 A resolution, respectively. In the catalytic site, the structural rearrangements are concerned mostly in switching of the orientation of Arg171 through the flexible intersubunit contact at the Q-axis subunit interface. The distorted orientation of Arg171 in the T state is stabilized by a unique intra-helix salt bridge between Arg171 and Glu178, which is in striking contrast to the multiple intersubunit salt bridges in Lactobacillus pentosus nonallosteric L-lactate dehydrogenase. In the backbone structure, major structural rearrangements of LCLDH are focused in two mobile regions of the catalytic domain. The two regions form an intersubunit linkage through contact at the P-axis subunit interface involving Arg185, replacement of which with Gln severely decreases the homotropic and hetertropic activation effects on the enzyme. These two regions form another intersubunit linkage in the Q-axis related dimer through the rigid NAD-binding domain, and thus constitute a pivotal frame of the intersubunit linkage for the allosteric motion, which is coupled with the concerted structural change of the four subunits in a tetramer, and of the binding sites for pyruvate and FBP. The unique intersubunit salt bridges, which are observed only in the R state structure, are likely involved in the pH-dependent allosteric equilibrium.


Assuntos
L-Lactato Desidrogenase/química , Lacticaseibacillus casei/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Frutose-Bifosfatase/química , Frutose-Bifosfatase/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência
17.
Sci Rep ; 9(1): 9283, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243315

RESUMO

Chloramphenicol (Cm) is a broad-spectrum classic antibiotic active against prokaryotic organisms. However, Cm has severe side effects in eukaryotes of which the cause remains unknown. The plant pathogenic fungus Magnaporthe oryzae, which causes rice blast, forms an appressorium to infect the host cell via single-cell differentiation. Chloramphenicol specifically inhibits appressorium formation, which indicates that Cm has a novel molecular target (or targets) in the rice blast fungus. Application of the T7 phage display method inferred that MoDullard, a Ser/Thr-protein phosphatase, may be a target of Cm. In animals Dullard functions in cell differentiation and protein synthesis, but in fungi its role is poorly understood. In vivo and in vitro analyses showed that MoDullard is required for appressorium formation, and that Cm can bind to and inhibit MoDullard function. Given that human phosphatase CTDSP1 complemented the MoDullard function during appressorium formation by M. oryzae, CTDSP1 may be a novel molecular target of Cm in eukaryotes.


Assuntos
Cloranfenicol/farmacologia , Magnaporthe/efeitos dos fármacos , Oryza/microbiologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Antifúngicos/farmacologia , Bacteriófago T7 , Diferenciação Celular , DNA Fúngico , Deleção de Genes , Teste de Complementação Genética , Humanos , Magnaporthe/enzimologia , Mutação , Biblioteca de Peptídeos , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Doenças das Plantas/microbiologia , Plasmídeos/genética , RNA Fúngico
18.
Biosci Biotechnol Biochem ; 72(4): 1087-94, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18391442

RESUMO

The gene for the D-mandelate dehydrogenase (D-ManDH) of Enterococcus faecalis IAM10071 was isolated by means of an activity staining procedure and PCR and expressed in Escherichia coli cells. The recombinant enzyme exhibited high catalytic activity toward various 2-ketoacid substrates with bulky hydrophobic side chains, particularly C3-branched substrates such as benzoylformate and 2-ketoisovalerate, and strict coenzyme specificity for NADH and NAD(+). It showed marked sequence similarity with known NADP-dependent 2-ketopantoate reductases (KPR). These results indicate that together with KPR, D-ManDH constitutes a new family of D-2-hydroxyacid dehydrogenases that act on C3-branched 2-ketoacid substrates with various specificities for coenzymes and substrates.


Assuntos
Oxirredutases do Álcool/metabolismo , Enterococcus faecalis/enzimologia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Sequência de Bases , Eletroforese em Gel de Poliacrilamida , Enterococcus faecalis/genética , Regulação Bacteriana da Expressão Gênica , Cinética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Coloração e Rotulagem
19.
Carbohydr Res ; 468: 13-22, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30121414

RESUMO

Sophorose (Sop2) is known as a powerful inducer of cellulases in Trichoderma reesei, and in recent years 1,2-ß-D-oligoglucan phosphorylase (SOGP) has been found to use Sop2 in synthetic reactions. From the structure of the complex of SOGP with Sop2, it was predicted that both the 3-hydroxy group at the reducing end glucose moiety of Sop2 and the 3'-hydroxy group at the non-reducing end glucose moiety of Sop2 were important for substrate recognition. In this study, three kinds of 3- and/or 3'-deoxy-Sop2 derivatives were synthesized to evaluate this mechanism. The deoxygenation of the 3-hydroxy group of D-glucopyranose derivative was performed by radical reduction using a toluoyl group as a leaving group. The utilization of a toluoyl group that plays two roles (a leaving group for the deoxygenation and a protecting group for a hydroxy group) resulted in efficient syntheses of the three target compounds. The NMR spectra of the two final compounds (3-deoxy- and 3,3'-dideoxy-Sop2) suggested that the glucose moiety of the reducing end of Sop2 can easily take on a furanose structure (five-membered ring structure) by deoxygenation of the 3-hydroxy group of Sop2. In addition, the ratio of the five- and six-membered ring structures changed depending on the temperature. The SOGPs exhibited remarkably lower specific activity for 3'-deoxy- and 3,3'-dideoxy-Sop2, indicating that the 3'-hydroxy group of Sop2 is important for substrate recognition by SOGPs.


Assuntos
Glucanos/química , Glucanos/síntese química , Fosforilases/metabolismo , Sequência de Aminoácidos , Indução Enzimática/efeitos dos fármacos , Glucanos/farmacologia , Modelos Moleculares , Fosforilases/biossíntese , Fosforilases/química , Conformação Proteica , Estereoisomerismo , Trichoderma/enzimologia
20.
FEBS Lett ; 591(23): 3926-3936, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29131329

RESUMO

BT_3567 protein, a putative ß-glucosidase from Bacteroides thetaiotaomicron, exhibits higher activity toward Sop3-5 (Sopn , n: degree of polymerization of ß-1,2-glucooligosaccharides) than toward Sop2 , unlike a known ß-glucosidase from Listeria innocua which predominantly prefers Sop2 . In the complex structure determined by soaking of a D286N mutant crystal with Sop4 , a Sop3 moiety was observed at subsites -1 to +2. The glucose moiety at subsite +2 forms a hydrogen bond with Asn81, which is replaced with Gly in the L. innocua ß-glucosidase. The Km values of the N81G mutant for Sop3-5 are much higher than those of the wild-type, suggesting that Asn81 contributes to the binding to substrates longer than Sop3 .


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides thetaiotaomicron/enzimologia , Oligossacarídeos/metabolismo , beta-Glucosidase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteroides thetaiotaomicron/genética , Domínio Catalítico , Cristalografia por Raios X , Genes Bacterianos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , beta-Glucosidase/química , beta-Glucosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA