Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Bacteriol ; 206(2): e0035123, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38289045

RESUMO

The DPANN archaeal clade includes obligately ectosymbiotic species. Their cell surfaces potentially play an important role in the symbiotic interaction between the ectosymbionts and their hosts. However, little is known about the mechanism of ectosymbiosis. Here, we show cell surface structures of the cultivated DPANN archaeon Nanobdella aerobiophila strain MJ1T and its host Metallosphaera sedula strain MJ1HA, using a variety of electron microscopy techniques, i.e., negative-staining transmission electron microscopy, quick-freeze deep-etch TEM, and 3D electron tomography. The thickness, unit size, and lattice symmetry of the S-layer of strain MJ1T were different from those of the host archaeon strain MJ1HA. Genomic and transcriptomic analyses highlighted the most highly expressed MJ1T gene for a putative S-layer protein with multiple glycosylation sites and immunoglobulin-like folds, which has no sequence homology to known S-layer proteins. In addition, genes for putative pectin lyase- or lectin-like extracellular proteins, which are potentially involved in symbiotic interaction, were found in the MJ1T genome based on in silico 3D protein structure prediction. Live cell imaging at the optimum growth temperature of 65°C indicated that cell complexes of strains MJ1T and MJ1HA were motile, but sole MJ1T cells were not. Taken together, we propose a model of the symbiotic interaction and cell cycle of Nanobdella aerobiophila.IMPORTANCEDPANN archaea are widely distributed in a variety of natural and artificial environments and may play a considerable role in the microbial ecosystem. All of the cultivated DPANN archaea so far need host organisms for their growth, i.e., obligately ectosymbiotic. However, the mechanism of the ectosymbiosis by DPANN archaea is largely unknown. To this end, we performed a comprehensive analysis of the cultivated DPANN archaeon, Nanobdella aerobiophila, using electron microscopy, live cell imaging, transcriptomics, and genomics, including 3D protein structure prediction. Based on the results, we propose a reasonable model of the symbiotic interaction and cell cycle of Nanobdella aerobiophila, which will enhance our understanding of the enigmatic physiology and ecological significance of DPANN archaea.


Assuntos
Archaea , Archaea/genética , Genoma Arqueal , Genômica , Filogenia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38967634

RESUMO

An anaerobic, mesophilic, syntrophic, archaeon strain MK-D1T, was isolated as a pure co-culture with Methanogenium sp. strain MK-MG from deep-sea methane seep sediment. This organism is, to our knowledge, the first cultured representative of 'Asgard' archaea, an archaeal group closely related to eukaryotes. Here, we describe the detailed physiology and phylogeny of MK-D1T and propose Promethearchaeum syntrophicum gen. nov., sp. nov. to accommodate this strain. Cells were non-motile, small cocci, approximately 300-750 nm in diameter and produced membrane vesicles, chains of blebs and membrane-based protrusions. MK-D1T grew at 4-30 °C with optimum growth at 20 °C. The strain grew chemoorganotrophically with amino acids, peptides and yeast extract with obligate dependence on syntrophy with H2-/formate-utilizing organisms. MK-D1T showed the fastest growth and highest maximum cell yield when grown with yeast extract as the substrate: approximately 3 months to full growth, reaching up to 6.7×106 16S rRNA gene copies ml-1. MK-D1T had a circular 4.32 Mb chromosome with a DNA G+C content of 31.1 mol%. The results of phylogenetic analyses of the 16S rRNA gene and conserved marker proteins indicated that the strain is affiliated with 'Asgard' archaea and more specifically DHVC1/DSAG/MBG-B and 'Lokiarchaeota'/'Lokiarchaeia'. On the basis of the results of 16S rRNA gene sequence analysis, the most closely related isolated relatives were Infirmifilum lucidum 3507LTT (76.09 %) and Methanothermobacter tenebrarum RMAST (77.45 %) and the closest relative in enrichment culture was Candidatus 'Lokiarchaeum ossiferum' (95.39 %). The type strain of the type species is MK-D1T (JCM 39240T and JAMSTEC no. 115508). We propose the associated family, order, class, phylum, and kingdom as Promethearchaeaceae fam. nov., Promethearchaeales ord. nov., Promethearchaeia class. nov., Promethearchaeota phyl. nov., and Promethearchaeati regn. nov., respectively. These are in accordance with ICNP Rules 8 and 22 for nomenclature, Rule 30(3)(b) for validation and maintenance of the type strain, and Rule 31a for description as a member of an unambiguous syntrophic association.


Assuntos
Composição de Bases , DNA Arqueal , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Arqueal/genética , Sedimentos Geológicos/microbiologia , Anaerobiose , Água do Mar/microbiologia , Vitamina K 2/análogos & derivados
3.
Biosci Biotechnol Biochem ; 88(2): 225-229, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37974049

RESUMO

The architecture of sporangia and zoospores of Actinoplanes missouriensis was analyzed at a high resolution using quick-freeze deep-etch replica electron microscopy. This analysis revealed that (i) sporangia were surrounded by at least 2 membranous layers with smooth surfaces, (ii) zoospores were enclosed by a fibrillar layer, and (iii) flagella were generated in a restricted area on the zoospore surface.


Assuntos
Actinoplanes , Esporângios , Microscopia Eletrônica , Flagelos
4.
J Bacteriol ; 205(3): e0034022, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36749051

RESUMO

Mycoplasma mobile is a fish pathogen that glides on solid surfaces by means of its own gliding machinery composed of internal and surface structures. In the present study, we focused on the function and structure of Gli123, a surface protein that is essential for the localization of other surface proteins. The amino acid sequence of Gli123, which is 1,128 amino acids long, contains lipoprotein-specific repeats. We isolated the native Gli123 protein from M. mobile cells and a recombinant protein, rGli123, from Escherichia coli. The isolated rGli123 complemented a nonbinding and nongliding mutant of M. mobile that lacked Gli123. Circular dichroism and rotary-shadowing electron microscopy (EM) showed that rGli123 has a structure that is not significantly different from that of the native protein. Rotary-shadowing EM suggested that Gli123 adopts two distinct globular and rod-like structures, depending on the ionic strength of the solution. Negative-staining EM coupled with single-particle analysis revealed that Gli123 forms a globular structure featuring a small protrusion with dimensions of approximately 15.7, 14.7, and 14.1 nm for the "height," major axis and minor axis, respectively. Small-angle X-ray scattering analyses indicated a rod-like structure composed of several tandem globular domains with total dimensions of approximately 34 nm in length and 6 nm in width. Both molecular structures were suggested to be dimers, based on the predicted molecular size and structure. Gli123 may have evolved by multiplication of repeating lipoprotein units and acquired a role for Gli521 and Gli349 assembly. IMPORTANCE Mycoplasmas are pathogenic bacteria that are widespread in animals. They are characterized by small cell and genome sizes but are equipped with unique abilities for infection, such as surface variation and gliding. Here, we focused on a surface-localizing protein named Gli123 that is essential for Mycoplasma mobile gliding. This study suggested that Gli123 undergoes drastic conformational changes between its rod-like and globular structures. These changes may be caused by a repetitive structure common in the surface proteins that is responsible for the modulation of the cell surface structure and related to the assembly process for the surface gliding machinery. An evolutionary process for surface proteins essential for this mycoplasma gliding was also suggested in the present study.


Assuntos
Proteínas de Bactérias , Mycoplasma , Proteínas de Bactérias/metabolismo , Mycoplasma/química , Mycoplasma/genética , Mycoplasma/metabolismo , Microscopia Eletrônica , Proteínas de Membrana
5.
Mol Microbiol ; 117(5): 1227-1244, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383382

RESUMO

MCCs are linear invaginations of the yeast plasma membrane that form stable membrane microdomains. Although over 20 proteins are localized in the MCCs, it is not well understood how these proteins coordinately maintain normal MCC function. Pil1 is a core eisosome protein and is responsible for MCC-invaginated structures. In addition, six-tetraspan membrane proteins (6-Tsp) are localized in the MCCs and classified into two families, the Sur7 family and Nce102 family. To understand the coordinated function of these MCC proteins, single and multiple deletion mutants of Pil1 and 6-Tsp were generated and their MCC structure and growth under various stresses were investigated. Genetic interaction analysis revealed that the Sur7 family and Nce102 function in stress tolerance and normal eisosome assembly, respectively, by cooperating with Pil1. To further understand the role of MCCs/eisosomes in stress tolerance, we screened for suppressor mutants using the SDS-sensitive phenotype of pil1Δ 6-tspΔ cells. This revealed that SDS sensitivity is caused by hyperactivation of Tor kinase complex 2 (TORC2)-Ypk1 signaling. Interestingly, inhibition of sphingolipid metabolism, a well-known downstream pathway of TORC2-Ypk1 signaling, did not rescue the SDS-sensitivity of pil1Δ 6-tspΔ cells. These results suggest that Pil1 and 6-Tsp cooperatively regulate TORC2 signaling during the stress response.


Assuntos
Proteínas de Saccharomyces cerevisiae , Membrana Celular/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Inorg Chem ; 60(7): 4693-4704, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33733771

RESUMO

Since the bullfrog H-ferritin L134P mutant in which leucine 134 is replaced with proline was found to exhibit a flexible conformation in the C3 axis channel, homologous ferritins with the corresponding mutation have often been studied in terms of a mechanism of iron release from the mineral core within the protein cavity. Meanwhile, a ferritin mutant with the flexible channel is an attractive material in developing a method to encapsulate functional molecules larger than mononuclear ions into the protein cavity. This study describes the clathrate with a horse spleen L-ferritin L134P mutant containing Prussian blue (PB) without a frequently used technique, disassembly and reassembly of the protein subunits. The spherical shell of ferritin was confirmed in a TEM image of the clathrate. The produced clathrate (PB@L134P) was soluble in water and reproduced the spectroscopic and electrochemical properties of PB prepared using the conventional method. The catalytic activity for an oxidoreductive reaction with H2O2, one of the major applications of conventional PB, was also observed for the clathrate. The instability of PB in alkaline solutions, limiting its wide applications in aqueous media, was significantly improved in PB@L134P, showing the protective effect of the protein shell. The method developed here shows that horse spleen L-ferritin L134P is a useful scaffold to produce clathrates of three-dimensional complexes with ferritin.


Assuntos
Apoferritinas/química , Ferritinas/química , Ferrocianetos/química , Animais , Ferritinas/genética , Cavalos , Modelos Moleculares , Estrutura Molecular , Mutação , Baço/química
7.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32801184

RESUMO

Outer membrane vesicles (OMVs) are naturally released from Gram-negative bacteria and play important roles in various biological functions. Released vesicles are not uniform in shape, size, or characteristics, and little is known about this diversity of OMVs. Here, we show that deletion of tolB, which encodes a part of the Tol-Pal system, leads to the production of multiple types of vesicles and increases overall vesicle production in the high-vesicle-forming Buttiauxella agrestis type strain JCM 1090. The ΔtolB mutant produced small OMVs and multilamellar/multivesicular OMVs (M-OMVs) as well as vesicles with a striking similarity to the wild type. M-OMVs, previously undescribed, contained triple-lamellar membrane vesicles and multiple vesicle-incorporating vesicles. Ultracentrifugation enabled the separation and purification of each type of OMV released from the ΔtolB mutant, and visualization by quick-freeze deep-etch and replica electron microscopy indicated that M-OMVs are composed of several lamellar membranes. Visualization of intracellular compartments of ΔtolB mutant cells showed that vesicles were accumulated in the broad periplasm, which is probably due to the low linkage between the outer and inner membranes attributed to the Tol-Pal defect. The outer membrane was invaginating inward by wrapping a vesicle, and the precursor of M-OMVs existed in the cell. Thus, we demonstrated a novel type of bacterial OMV and showed that unconventional processes enable the B. agrestis ΔtolB mutant to form unique vesicles.IMPORTANCE Membrane vesicle (MV) formation has been recognized as a common mechanism in prokaryotes, and MVs play critical roles in intercellular interaction. However, a broad range of MV types and their multiple production processes make it difficult to gain a comprehensive understanding of MVs. In this work, using vesicle separation and electron microscopic analyses, we demonstrated that diverse types of outer membrane vesicles (OMVs) were released from an engineered strain, Buttiauxella agrestis JCM 1090T ΔtolB mutant. We also discovered a previously undiscovered type of vesicle, multilamellar/multivesicular outer membrane vesicles (M-OMVs), which were released by this mutant using unconventional processes. These findings have facilitated considerable progress in understanding MV diversity and expanding the utility of MVs in biotechnological applications.


Assuntos
Proteínas de Bactérias/genética , Enterobacteriaceae/fisiologia , Proteínas Periplásmicas/genética , Proteínas de Bactérias/metabolismo , Enterobacteriaceae/genética , Mutação , Proteínas Periplásmicas/metabolismo
8.
Biochem Biophys Res Commun ; 508(4): 1050-1055, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30551878

RESUMO

Mycoplasma pneumoniae forms an attachment organelle at one cell pole, binds to the host cell surface, and glides via a unique mechanism. A 170-kDa protein, P1 adhesin, present on the organelle surface plays a critical role in the binding and gliding process. In this study, we obtained a recombinant P1 adhesin comprising 1476 amino acid residues, excluding the C-terminal domain of 109 amino acids that carried the transmembrane segment, that were fused to additional 17 amino acid residues carrying a hexa-histidine (6 × His) tag using an Escherichia coli expression system. The recombinant protein showed solubility, and chirality in circular dichroism (CD). The results of analytical gel filtration, ultracentrifugation, negative-staining electron microscopy, and small-angle X-ray scattering (SAXS) showed that the recombinant protein exists in a monomeric form with a uniformly folded structure. SAXS analysis suggested the presence of a compact and ellipsoidal structure rather than random or molten globule-like conformation. Structure model based on SAXS results fitted well with the corresponding structure obtained with cryo-electron tomography from a closely related species, M. genitalium. This recombinant protein may be useful for structural and functional studies as well as for the preparation of antibodies for medical applications.


Assuntos
Adesinas Bacterianas/biossíntese , Variação Antigênica , Aderência Bacteriana , Proteínas Recombinantes/biossíntese , Adesinas Bacterianas/isolamento & purificação , Adesinas Bacterianas/ultraestrutura , Humanos , Hidrodinâmica , Modelos Moleculares , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/ultraestrutura , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
J Bacteriol ; 198(17): 2352-9, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27325681

RESUMO

UNLABELLED: Mycoplasma pneumoniae is a human pathogen that glides on host cell surfaces with repeated catch and release of sialylated oligosaccharides. At a pole, this organism forms a protrusion called the attachment organelle, which is composed of surface structures, including P1 adhesin and the internal core structure. The core structure can be divided into three parts, the terminal button, paired plates, and bowl complex, aligned in that order from the front end of the protrusion. To elucidate the gliding mechanism, we focused on MPN387, a component protein of the bowl complex which is essential for gliding but dispensable for cytadherence. The predicted amino acid sequence showed that the protein features a coiled-coil region spanning residue 72 to residue 290 of the total of 358 amino acids in the protein. Recombinant MPN387 proteins were isolated with and without an enhanced yellow fluorescent protein (EYFP) fusion tag and analyzed by gel filtration chromatography, circular dichroism spectroscopy, analytical ultracentrifugation, partial proteolysis, and rotary-shadowing electron microscopy. The results showed that MPN387 is a dumbbell-shaped homodimer that is about 42.7 nm in length and 9.1 nm in diameter and includes a 24.5-nm-long central parallel coiled-coil part. The molecular image was superimposed onto the electron micrograph based on the localizing position mapped by fluorescent protein tagging. A proposed role of this protein in the gliding mechanism is discussed. IMPORTANCE: Human mycoplasma pneumonia is caused by a pathogenic bacterium, Mycoplasma pneumoniae This tiny, 2-µm-long bacterium is suggested to infect humans by gliding on the surface of the trachea through binding to sialylated oligosaccharides. The mechanism underlying mycoplasma "gliding motility" is not related to any other well-studied motility systems, such as bacterial flagella and eukaryotic motor proteins. Here, we isolated and analyzed the structure of a key protein which is directly involved in the gliding mechanism.


Assuntos
Proteínas de Bactérias/metabolismo , Mycoplasma pneumoniae/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Movimento , Mycoplasma pneumoniae/genética , Conformação Proteica
10.
Microscopy (Oxf) ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38819330

RESUMO

Bacterial spores, known for their complex and resilient structures, have been the focus of visualization using various methodologies. In this study, we applied quick-freeze and replica electron microscopy techniques, allowing observation of Bacillus subtilis spores in high-contrast and three-dimensional detail. This method facilitated visualization of the spore structure with enhanced resolution and provided new insights into the spores and their germination processes. We identified and described five distinct structures: (i) hair-like structures on the spore surface, (ii) spike formation on the surface of lysozyme-treated spores, (iii) the fractured appearance of the spore cortex during germination, (iv) potential connections between small vesicles and the core membrane and (v) the evolving surface structure of nascent vegetative cells during germination.

11.
PLoS One ; 19(4): e0301613, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564580

RESUMO

Outer membrane vesicles (OMVs) are produced by Gram-negative bacteria and deliver microbial molecules to distant target cells in a host. OMVs secreted by probiotic probiotic strain Escherichia coli Nissle 1917 (EcN) have been reported to induce an immune response. In this study, we aimed to increase the OMV production of EcN. The double gene knockout of mlaE and nlpI was conducted in EcN because the ΔmlaEΔnlpI of experimental strain E. coli K12 showed the highest OMV production in our previous report. The ΔmlaEΔnlpI of EcN showed approximately 8 times higher OMV production compared with the parental (wild-type) strain. Quick-freeze, deep-etch replica electron microscopy revealed that plasmolysis occurred in the elongated ΔmlaEΔnlpI cells and the peptidoglycan (PG) had numerous holes. While these phenomena are similar to the findings for the ΔmlaEΔnlpI of K12, there were more PG holes in the ΔmlaEΔnlpI of EcN than the K12 strain, which were observed not only at the tip of the long axis but also in the whole PG structure. Further analysis clarified that the viability of ΔmlaEΔnlpI of EcN decreased compared with that of the wild-type. Although the amount of PG in ΔmlaEΔnlpI cells was about half of that in wild-type, the components of amino acids in PG did not change in ΔmlaEΔnlpI. Although the viability decreased compared to the wild-type, the ΔmlaEΔnlpI grew in normal culture conditions. The hypervesiculation strain constructed here is expected to be used as an enhanced probiotic strain.


Assuntos
Proteínas de Escherichia coli , Probióticos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Parede Celular/metabolismo , Probióticos/metabolismo
12.
Front Microbiol ; 15: 1400434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966389

RESUMO

Escherichia coli produces extracellular vesicles called outer membrane vesicles. In this study, we investigated the mechanism underlying the hypervesiculation of deletion mutant ΔrodZ of E. coli. RodZ forms supramolecular complexes with actin protein MreB and peptidoglycan (PG) synthase, and plays an important role in determining the cell shape. Because mreB is an essential gene, an expression-repressed strain (mreB R3) was constructed using CRISPRi, in which the expression of mreB decreased to 20% of that in the wild-type (WT) strain. In shaken-flask culture, the ΔrodZ strain produced >50 times more vesicles than the WT strain. The mreB-repressed strain mreB R3 showed eightfold higher vesicle production than the WT. ΔrodZ and mreB R3 cells were observed using quick-freeze replica electron microscopy. As reported in previous studies, ΔrodZ cells were spherical (WT cells are rod-shaped). Some ΔrodZ cells (around 7% in total) had aberrant surface structures, such as budding vesicles and dented surfaces, or curved patterns on the surface. Holes in the PG layer and an increased cell volume were observed for ΔrodZ and mreB R3 cells compared with the WT. In conditions of osmotic support using sucrose, the OD660 value of the ΔrodZ strain increased significantly, and vesicle production decreased drastically, compared with those in the absence of sucrose. This study first clarified that vesicle production by the E. coli ΔrodZ strain is promoted by surface budding and a burst of cells that became osmotically sensitive because of their incomplete PG structure.

13.
Methods Mol Biol ; 2646: 299-307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36842124

RESUMO

Peptidoglycan (PG) is an essential component of the bacterial cell wall that protects the cell from turgor pressure and maintains its shape. In diderm (gram-negative) bacteria, such as Escherichia coli, the PG layer is flexible with a thickness of a 2-6 nm, and its visualization is difficult due to the presence of the outer membrane. The quick-freeze deep-etch replica method has been widely used for the visualization of flexible structures in cell interior, such as cell organelles and membrane components. In this technique, a platinum replica on the surface of a specimen fixed by freezing is observed using a transmission electron microscope. In this chapter, we describe the application of this method for visualizing the E. coli PG layer. We expect that these methods will be useful for the visualization of the PG layer in diverse bacterial species.


Assuntos
Escherichia coli , Peptidoglicano , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Microscopia Eletrônica , Parede Celular/química
14.
Commun Biol ; 6(1): 94, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690840

RESUMO

Many bacteria belonging to the phylum Bacteroidetes move on solid surfaces, called gliding motility. In our previous study with the Bacteroidetes gliding bacterium Flavobacterium johnsoniae, we proposed a helical loop track model, where adhesive SprB filaments are propelled along a helical loop on the cell surface. In this study, we observed the gliding cell rotating counterclockwise about its axis when viewed from the rear to the advancing direction of the cell and revealed that one labeled SprB focus sometimes overtook and passed another SprB focus that was moving in the same direction. Several electron microscopic analyses revealed the presence of a possible multi-rail structure underneath the outer membrane, which was associated with SprB filaments and contained GldJ protein. These results provide insights into the mechanism of Bacteroidetes gliding motility, in which the SprB filaments are propelled along tracks that may form a multi-rail system underneath the outer membrane. The insights may give clues as to how the SprB filaments get their driving force.


Assuntos
Proteínas de Bactérias , Bacteroidetes , Proteínas de Bactérias/metabolismo , Bacteroidetes/metabolismo
15.
Microbiologyopen ; 12(5): e1385, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37877652

RESUMO

Peptidoglycan for elongation in Escherichia coli is synthesized by the Rod complex, which includes RodZ. Although various mutant strains of the Rod complex have been isolated, the relationship between the activity of the Rod complex and the overall physical and chemical structures of the peptidoglycan have not been reported. We constructed a RodZ mutant, termed RMR, and analyzed the growth rate, morphology, and other characteristics of cells producing the Rod complexes containing RMR. The growth and morphology of RMR cells were abnormal, and we isolated suppressor mutants from RMR cells. Most of the suppressor mutations were found in components of the Rod complex, suggesting that these suppressor mutations increase the integrity and/or the activity of the Rod complex. We purified peptidoglycan from wild-type, RMR, and suppressor mutant cells and observed their structures in detail. We found that the peptidoglycan purified from RMR cells had many large holes and different compositions of muropeptides from those of WT cells. The Rod complex may be a determinant not only for the whole shape of peptidoglycan but also for its highly dense structure to support the mechanical strength of the cell wall.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Peptidoglicano , Proteínas do Citoesqueleto/genética , Parede Celular
16.
Front Microbiol ; 14: 1252155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107868

RESUMO

Membrane vesicles (MVs) are small spherical structures (20-400 nm) produced by most bacteria and have important biological functions including toxin delivery, signal transfer, biofilm formation, and immunomodulation of the host. Although MV formation is enhanced in biofilms of a wide range of bacterial species, the underlying mechanisms are not fully understood. An opportunistic pathogen, Pseudomonas aeruginosa, causes chronic infections that can be difficult to treat due to biofilm formation. Since MVs are abundant in biofilms, can transport virulence factors to the host, and have inflammation-inducing functions, the mechanisms of enhanced MV formation in biofilms needs to be elucidated to effectively treat infections. In this study, we evaluated the characteristics of MVs in P. aeruginosa PAO1 biofilms, and identified factors that contribute to enhanced MV formation. Vesiculation was significantly enhanced in the static culture; MVs were connected to filamentous substances in the biofilm, and separation between the outer and inner membranes and curvature of the membrane were observed in biofilm cells. By screening a transposon mutant library (8,023 mutants) for alterations in MV formation in biofilms, 66 mutants were identified as low-vesiculation strains (2/3 decrease relative to wild type), whereas no mutant was obtained that produced more MVs (twofold increase). Some transposons were inserted into genes related to biofilm formation, including flagellar motility (flg, fli, and mot) and extracellular polysaccharide synthesis (psl). ΔpelAΔpslA, which does not synthesize the extracellular polysaccharides Pel and Psl, showed reduced MV production in biofilms but not in planktonic conditions, suggesting that enhanced vesiculation is closely related to the synthesis of biofilm matrices in P. aeruginosa. Additionally, we found that blebbing occurred during bacterial attachment. Our findings indicate that biofilm-related factors are closely involved in enhanced MV formation in biofilms and that surface sensing facilitates vesiculation. Furthermore, this work expands the understanding of the infection strategy in P. aeruginosa biofilms.

17.
Sci Adv ; 8(48): eabo7490, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36449609

RESUMO

Motility is one of the most important features of life, but its evolutionary origin remains unknown. In this study, we focused on Spiroplasma, commensal, or parasitic bacteria. They swim by switching the helicity of a ribbon-like cytoskeleton that comprises six proteins, each of which evolved from a nucleosidase and bacterial actin called MreB. We expressed these proteins in a synthetic, nonmotile minimal bacterium, JCVI-syn3B, whose reduced genome was computer-designed and chemically synthesized. The synthetic bacterium exhibited swimming motility with features characteristic of Spiroplasma swimming. Moreover, combinations of Spiroplasma MreB4-MreB5 and MreB1-MreB5 produced a helical cell shape and swimming. These results suggest that the swimming originated from the differentiation and coupling of bacterial actins, and we obtained a minimal system for motility of the synthetic bacterium.


Assuntos
Actinas , Spiroplasma , Spiroplasma/genética , Natação , Bactérias , Citoesqueleto
18.
J Fungi (Basel) ; 7(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34829284

RESUMO

The authors would like to make the following corrections to this paper [...].

19.
iScience ; 24(1): 102015, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33532712

RESUMO

Bacterial membrane vesicles (MVs) are attracting considerable attention in diverse fields of life science and biotechnology due to their potential for various applications. Although there has been progress in determining the mechanisms of MV formation in Gram-negative and Gram-positive bacteria, the mechanisms in mycolic acid-containing bacteria remain an unsolved question due to its complex cell envelope structure. Here, by adapting super-resolution live-cell imaging and biochemical analysis, we show that Corynebacterium glutamicum form distinct types of MVs via different routes in response to environmental conditions. DNA-damaging stress induced MV formation through prophage-triggered cell lysis, whereas envelope stress induced MV formation through mycomembrane blebbing. The MV formation routes were conserved in other mycolic acid-containing bacteria. Our results show how the complex cell envelope structure intrinsically generates various types of MVs and will advance our knowledge on how different types of MVs can be generated from a single cell organism.

20.
Front Microbiol ; 12: 706525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456889

RESUMO

Escherichia coli produces extracellular vesicles called outer membrane vesicles (OMVs) by releasing a part of its outer membrane. We previously reported that the combined deletion of nlpI and mlaE, related to envelope structure and phospholipid accumulation in the outer leaflet of the outer membrane, respectively, resulted in the synergistic increase of OMV production. In this study, the analysis of ΔmlaEΔnlpI cells using quick-freeze, deep-etch electron microscopy (QFDE-EM) revealed that plasmolysis occurred at the tip of the long axis in cells and that OMVs formed from this tip. Plasmolysis was also observed in the single-gene knockout mutants ΔnlpI and ΔmlaE. This study has demonstrated that plasmolysis was induced in the hypervesiculating mutant E. coli cells. Furthermore, intracellular vesicles and multilamellar OMV were observed in the ΔmlaEΔnlpI cells. Meanwhile, the secretion of recombinant green fluorescent protein (GFP) expressed in the cytosol of the ΔmlaEΔnlpI cells was more than 100 times higher than that of WT and ΔnlpI, and about 50 times higher than that of ΔmlaE in the OMV fraction, suggesting that cytosolic components were incorporated into outer-inner membrane vesicles (OIMVs) and released into the extracellular space. Additionally, QFDE-EM analysis revealed that ΔmlaEΔnlpI sacculi contained many holes noticeably larger than the mean radius of the peptidoglycan (PG) pores in wild-type (WT) E. coli. These results suggest that in ΔmlaEΔnlpI cells, cytoplasmic membrane materials protrude into the periplasmic space through the peptidoglycan holes and are released as OIMVs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA