Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0292575, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285676

RESUMO

Hematopoietic stem cells (HSCs) are somatic stem cells that continuously generate lifelong supply of blood cells through a balance of symmetric and asymmetric divisions. It is well established that the HSC pool increases with age. However, not much is known about the underlying cause for these observed changes. Here, using a novel method combining single-cell ex vivo HSC expansion with mathematical modeling, we quantify HSC division types (stem cell-stem cell (S-S) division, stem cell-progenitor cell (S-P) division, and progenitor cell-progenitor cell (P-P) division) as a function of the aging process. Our time-series experiments reveal how changes in these three modes of division can explain the increase in HSC numbers with age. Contrary to the popular notion that HSCs divide predominantly through S-P divisions, we show that S-S divisions are predominant throughout the lifespan of the animal, thereby expanding the HSC pool. We, therefore, provide a novel mathematical model-based experimental validation for reflecting HSC dynamics in vivo.


Assuntos
Células-Tronco Hematopoéticas , Modelos Teóricos , Animais , Divisão Celular , Células-Tronco Hematopoéticas/metabolismo , Ciclo Celular , Proliferação de Células , Diferenciação Celular
2.
Sci Immunol ; 9(95): eade2094, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787961

RESUMO

Immunotherapy advances have been hindered by difficulties in tracking the behaviors of lymphocytes after antigen signaling. Here, we assessed the behavior of T cells active within tumors through the development of the antigen receptor signaling reporter (AgRSR) mouse, fate-mapping lymphocytes responding to antigens at specific times and locations. Contrary to reports describing the ready egress of T cells out of the tumor, we find that intratumoral antigen signaling traps CD8+ T cells in the tumor. These clonal populations expand and become increasingly exhausted over time. By contrast, antigen-signaled regulatory T cell (Treg) clonal populations readily recirculate out of the tumor. Consequently, intratumoral antigen signaling acts as a gatekeeper to compartmentalize CD8+ T cell responses, even within the same clonotype, thus enabling exhausted T cells to remain confined to a specific tumor tissue site.


Assuntos
Linfócitos T CD8-Positivos , Transdução de Sinais , Animais , Linfócitos T CD8-Positivos/imunologia , Camundongos , Transdução de Sinais/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Antígenos de Neoplasias/imunologia , Neoplasias/imunologia
3.
Stem Cell Reports ; 16(4): 741-753, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33770496

RESUMO

Hematopoiesis serves as a paradigm for how homeostasis is maintained within hierarchically organized cell populations. However, important questions remain as to the contribution of hematopoietic stem cells (HSCs) toward maintaining steady state hematopoiesis. A number of in vivo lineage labeling and propagation studies have given rise to contradictory interpretations, leaving key properties of stem cell function unresolved. Using processed flow cytometry data coupled with a biology-driven modeling approach, we show that in vivo flux experiments that come from different laboratories can all be reconciled into a single unifying model, even though they had previously been interpreted as being contradictory. We infer from comparative analysis that different transgenic models display distinct labeling efficiencies across a heterogeneous HSC pool, which we validate by marker gene expression associated with HSC function. Finally, we show how the unified model of HSC differentiation can be used to simulate clonal expansion in the early stages of leukemogenesis.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Leucemia/patologia , Modelos Biológicos , Animais , Biomarcadores/metabolismo , Carcinogênese/patologia , Autorrenovação Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Integrases/metabolismo , Cinética , Camundongos Transgênicos , Receptor TIE-2/metabolismo , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA