RESUMO
RAD51 is the central eukaryotic recombinase required for meiotic recombination and mitotic repair of double-strand DNA breaks (DSBs)1,2. However, the mechanism by which RAD51 functions at DSB sites in chromatin has remained elusive. Here we report the cryo-electron microscopy structures of human RAD51-nucleosome complexes, in which RAD51 forms ring and filament conformations. In the ring forms, the N-terminal lobe domains (NLDs) of RAD51 protomers are aligned on the outside of the RAD51 ring, and directly bind to the nucleosomal DNA. The nucleosomal linker DNA that contains the DSB site is recognized by the L1 and L2 loops-active centres that face the central hole of the RAD51 ring. In the filament form, the nucleosomal DNA is peeled by the RAD51 filament extension, and the NLDs of RAD51 protomers proximal to the nucleosome bind to the remaining nucleosomal DNA and histones. Mutations that affect nucleosome-binding residues of the RAD51 NLD decrease nucleosome binding, but barely affect DNA binding in vitro. Consistently, yeast Rad51 mutants with the corresponding mutations are substantially defective in DNA repair in vivo. These results reveal an unexpected function of the RAD51 NLD, and explain the mechanism by which RAD51 associates with nucleosomes, recognizes DSBs and forms the active filament in chromatin.
Assuntos
Microscopia Crioeletrônica , Quebras de DNA de Cadeia Dupla , Nucleossomos , Rad51 Recombinase , Proteínas de Saccharomyces cerevisiae , Humanos , DNA/química , DNA/metabolismo , DNA/ultraestrutura , Reparo do DNA/genética , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Rad51 Recombinase/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mutação , Domínios Proteicos , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Ligação ProteicaRESUMO
Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1ß, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin.
Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Microscopia Crioeletrônica/métodos , DNA/metabolismo , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Metilação , Nucleossomos/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismoRESUMO
The Lys mutation of the canonical histone H3.1 Glu97 residue (H3E97K) is found in cancer cells. Previous biochemical analyses revealed that the nucleosome containing the H3E97K mutation is extremely unstable as compared to the wild-type nucleosome. However, the mechanism by which the H3E97K mutation causes nucleosome instability has not been clarified yet. In the present study, the cryo-electron microscopy structure of the nucleosome containing the H3E97K mutation revealed that the entry/exit DNA regions of the H3E97K nucleosome are disordered, probably by detachment of the nucleosomal DNA from the H3 N-terminal regions. This may change the intra-molecular amino acid interactions with the replaced H3 Lys97 residue, inducing structural distortion around the mutated position in the nucleosome. Consistent with the nucleosomal DNA end flexibility and the nucleosome instability, the H3E97K mutation exhibited reduced binding of linker histone H1 to the nucleosome, defective activation of PRC2 (the essential methyltransferase for facultative heterochromatin formation) with a poly-nucleosome, and enhanced nucleosome transcription by RNA polymerase II.
Assuntos
Microscopia Crioeletrônica , Histonas , Mutação , Neoplasias , Nucleossomos , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Nucleossomos/genética , Histonas/metabolismo , Histonas/genética , Microscopia Crioeletrônica/métodos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , DNA/metabolismo , DNA/genética , DNA/químicaRESUMO
The N-terminal tails of histones protrude from the nucleosome core and are target sites for histone modifications, such as acetylation and methylation. Histone acetylation is considered to enhance transcription in chromatin. However, the contribution of the histone N-terminal tail to the nucleosome transcription by RNA polymerase II (RNAPII) has not been clarified. In the present study, we reconstituted nucleosomes lacking the N-terminal tail of each histone, H2A, H2B, H3 or H4, and performed RNAPII transcription assays. We found that the N-terminal tail of H3, but not H2A, H2B and H4, functions in RNAPII pausing at the SHL(-5) position of the nucleosome. Consistently, the RNAPII transcription assay also revealed that the nucleosome containing N-terminally acetylated H3 drastically alleviates RNAPII pausing at the SHL(-5) position. In addition, the H3 acetylated nucleosome produced increased amounts of the run-off transcript. These results provide important evidence that the H3 N-terminal tail plays a role in RNAPII pausing at the SHL(-5) position of the nucleosome, and its acetylation directly alleviates this nucleosome barrier.
Assuntos
Histonas , Nucleossomos , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , RNA Polimerase II/genética , Acetilação , CromatinaRESUMO
The canonical nucleosome, which represents the major packaging unit of eukaryotic chromatin, has an octameric core composed of two histone H2A-H2B and H3-H4 dimers with â¼147 base pairs (bp) of DNA wrapped around it. Non-nucleosomal particles with alternative histone stoichiometries and DNA wrapping configurations have been found, and they could profoundly influence genome architecture and function. Using cryo-electron microscopy, we solved the structure of the H3-H4 octasome, a nucleosome-like particle with a di-tetrameric core consisting exclusively of the H3 and H4 histones. The core is wrapped by â¼120 bp of DNA in 1.5 negative superhelical turns, forming two stacked disks that are connected by a H4-H4' four-helix bundle. Three conformations corresponding to alternative interdisk angles were observed, indicating the flexibility of the H3-H4 octasome structure. In vivo crosslinking experiments detected histone-histone interactions consistent with the H3-H4 octasome model, suggesting that H3-H4 octasomes or related structural features exist in cells.
Assuntos
Histonas , Nucleossomos , Histonas/genética , Microscopia Crioeletrônica , Cromatina , DNARESUMO
RNA polymerase II (RNAPII) transcribes DNA wrapped in the nucleosome by stepwise pausing, especially at nucleosomal superhelical locations -5 and -1 [SHL(-5) and SHL(-1), respectively]. In the present study, we performed cryo-electron microscopy analyses of RNAPII-nucleosome complexes paused at a major nucleosomal pausing site, SHL(-1). We determined two previously undetected structures, in which the transcribed DNA behind RNAPII is sharply kinked at the RNAPII exit tunnel and rewrapped around the nucleosomal histones in front of RNAPII by DNA looping. This DNA kink shifts the DNA orientation toward the nucleosome, and the transcribed DNA region interacts with basic amino acid residues of histones H2A, H2B, and H3 exposed by the RNAPII-mediated nucleosomal DNA peeling. The DNA loop structure was not observed in the presence of the transcription elongation factors Spt4/5 and Elf1. These RNAPII-nucleosome structures provide important information for understanding the functional relevance of DNA looping during transcription elongation in the nucleosome.
Assuntos
Histonas , Nucleossomos , RNA Polimerase II , Cromatina , Microscopia Crioeletrônica , DNA/metabolismo , Histonas/metabolismo , RNA Polimerase II/metabolismo , Fatores de Elongação da Transcrição/metabolismoRESUMO
Histone H3mm18 is a non-allelic H3 variant expressed in skeletal muscle and brain in mice. However, its function has remained enigmatic. We found that H3mm18 is incorporated into chromatin in cells with low efficiency, as compared to H3.3. We determined the structures of the nucleosome core particle (NCP) containing H3mm18 by cryo-electron microscopy, which revealed that the entry/exit DNA regions are drastically disordered in the H3mm18 NCP. Consistently, the H3mm18 NCP is substantially unstable in vitro. The forced expression of H3mm18 in mouse myoblast C2C12 cells markedly suppressed muscle differentiation. A transcriptome analysis revealed that the forced expression of H3mm18 affected the expression of multiple genes, and suppressed a group of genes involved in muscle development. These results suggest a novel gene expression regulation system in which the chromatin landscape is altered by the formation of unusual nucleosomes with a histone variant, H3mm18, and provide important insight into understanding transcription regulation by chromatin.
Assuntos
Histonas/química , Nucleossomos/química , Transcriptoma , Animais , Microscopia Crioeletrônica , Histonas/genética , Histonas/metabolismo , Camundongos , Mioblastos/metabolismo , Mioblastos/ultraestrutura , Células NIH 3T3 , Nucleossomos/metabolismo , Nucleossomos/ultraestruturaRESUMO
Chromatin is the fundamental structure of genomic DNA in eukaryotic cells. The nucleosome, the primary unit of chromatin, consists of DNA and histone proteins, and is important for the maintenance of genomic DNA. Histone mutations are present in many types of cancers, suggesting that chromatin and/or nucleosome structures could be closely related to cancer development. Histone modifications and histone variants are also involved in regulating chromatin and nucleosome structures. Chromatin structures are dynamically changed by nucleosome binding proteins. In this review article, we discuss the current progress toward understanding the relationship between chromatin structure and cancer development.
Assuntos
Histonas , Nucleossomos , Humanos , Histonas/genética , Histonas/metabolismo , Cromatina/genética , DNA/química , Carcinogênese/genéticaRESUMO
Giardia lamblia is a pathogenic unicellular eukaryotic parasite that causes giardiasis. Its genome encodes the canonical histones H2A, H2B, H3, and H4, which share low amino acid sequence identity with their human orthologues. We determined the structure of the G. lamblia nucleosome core particle (NCP) at 3.6 Å resolution by cryo-electron microscopy. G. lamblia histones form a characteristic NCP, in which the visible 125 base-pair region of the DNA is wrapped in a left-handed supercoil. The acidic patch on the G. lamblia octamer is deeper, due to an insertion extending the H2B α1 helix and L1 loop, and thus cannot bind the LANA acidic patch binding peptide. The DNA and histone regions near the DNA entry-exit sites could not be assigned, suggesting that these regions are asymmetrically flexible in the G. lamblia NCP. Characterization by thermal unfolding in solution revealed that both the H2A-H2B and DNA association with the G. lamblia H3-H4 were weaker than those for human H3-H4. These results demonstrate the uniformity of the histone octamer as the organizing platform for eukaryotic chromatin, but also illustrate the unrecognized capability for large scale sequence variations that enable the adaptability of histone octamer surfaces and confer internal stability.
Assuntos
Microscopia Crioeletrônica , Giardia lamblia/ultraestrutura , Histonas/genética , Nucleossomos/ultraestrutura , Sequência de Aminoácidos/genética , Cromatina/genética , Cromatina/ultraestrutura , Giardia lamblia/genética , Histonas/ultraestrutura , Humanos , Estrutura Molecular , Nucleossomos/genéticaRESUMO
Equine piroplasmosis is an infectious disease caused by Babesia caballi and Theileria equi. A competition horse that had been imported to the Equestrian Park for the Tokyo 2020 Olympic Games and had a fever over 40°C and severe anemia was diagnosed with equine piroplasmosis by blood smear and direct polymerase chain reaction (PCR) tests for Theileria equi. Treatment with protozoan anthelmintics and whole blood transfusion diminished the fever, improved the anemia, and allowed the horse to return home safely. Preparation for routine cases of this infection should include the development of a system that allows accurate and prompt international dissemination of information and implementation of quarantine measures.
RESUMO
The Miyako horse is a native Japanese horse breed. As with other native Japanese horses, the number of Miyako horses decreased due to mechanization and motorization, which reduced their roles, with just 14 in 1980. Although their population had increased to 55 horses by 2021, a further increase in their numbers is required to avoid extinction. Recently, their breeding has involved natural mating during group grazing; therefore, pedigree management has been difficult, and individual identification has been inconclusive. With the aim of formulating an effective breeding plan, this study used microsatellites to confirm parent-offspring relationships and evaluate the genetic diversity over time. First, the combination of microsatellite genotypes identified misunderstood parent-offspring relationships in 35.3% of the existing individuals, and a correct family tree was reconstructed. Next, the number of alleles and observed and expected values of heterozygosity were calculated separately for the populations during periods of 1998-2012 and 2013-2020. The values were 4.2, 0.705, and 0.653 and 3.9, 0.633, and 0.603, respectively, indicating that genetic diversity according to all indices decreased during period of 2013-2020. This was probably because of the bias of stallions in the 2013-2020 population. Errors in pedigree information in a small population such as Miyako horses could increase the risk of inbreeding, and confirmation of parent-offspring relationships using genotypes may be beneficial. Additionally, to maintain diversity in future breeding, it is important to avoid bias, particularly among stallions, and to ensure offspring of various individuals who are as distantly related to each other as possible.
RESUMO
Recently, the use of oncolytic viruses in cancer therapy has become a realistic therapeutic option. Seneca Valley Virus (SVV) is a newly discovered picornavirus, which has earned a significant reputation as a potent oncolytic agent. Anthrax toxin receptor 1 (ANTXR1), one of the cellular receptors for the protective antigen secreted by Bacillus anthracis, has been identified as the high-affinity cellular receptor for SVV. Here, we report the structure of the SVV-ANTXR1 complex determined by single-particle cryo-electron microscopy analysis at near-atomic resolution. This is an example of a shared receptor structure between a mammalian virus and a bacterial toxin. Our structure shows that ANTXR1 decorates the outer surface of the SVV capsid and interacts with the surface-exposed BC loop and loop II of VP1, "the puff" of VP2 and "the knob" of VP3. Comparison of the receptor-bound capsid structure with the native capsid structure reveals that receptor binding induces minor conformational changes in SVV capsid structure, suggesting the role of ANTXR1 as an attachment receptor. Furthermore, our results demonstrate that the capsid footprint on the receptor is not conserved in anthrax toxin receptor 2 (ANTXR2), thereby providing a molecular mechanism for explaining the exquisite selectivity of SVV for ANTXR1.
Assuntos
Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Picornaviridae/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Antígenos de Bactérias/metabolismo , Bacillus anthracis/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Especificidade de Hospedeiro , Humanos , Proteínas dos Microfilamentos , Modelos Moleculares , Proteínas de Neoplasias/genética , Terapia Viral Oncolítica , Picornaviridae/genética , Ligação Proteica , Receptores de Superfície Celular/genética , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Relação Estrutura-AtividadeRESUMO
Fanconi anaemia (FA) is a rare hereditary disorder characterized by genomic instability and cancer susceptibility. A key FA protein, FANCD2, is targeted to chromatin with its partner, FANCI, and plays a critical role in DNA crosslink repair. However, the molecular function of chromatin-bound FANCD2-FANCI is still poorly understood. In the present study, we found that FANCD2 possesses nucleosome-assembly activity in vitro. The mobility of histone H3 was reduced in FANCD2-knockdown cells following treatment with an interstrand DNA crosslinker, mitomycin C. Furthermore, cells harbouring FANCD2 mutations that were defective in nucleosome assembly displayed impaired survival upon cisplatin treatment. Although FANCI by itself lacked nucleosome-assembly activity, it significantly stimulated FANCD2-mediated nucleosome assembly. These observations suggest that FANCD2-FANCI may regulate chromatin dynamics during DNA repair.
Assuntos
Reparo do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Chaperonas de Histonas/metabolismo , Animais , Linhagem Celular , Galinhas , Dano ao DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Histonas/metabolismo , Humanos , Nucleossomos/metabolismoRESUMO
The histone H2A variant H2A.W occupies transposons and thus prevents access to them in Arabidopsis thaliana. H2A.W is deposited by the chromatin remodeler DDM1, which also promotes the accessibility of chromatin writers to heterochromatin by an unknown mechanism. To shed light on this question, we solve the cryo-EM structures of nucleosomes containing H2A and H2A.W, and the DDM1-H2A.W nucleosome complex. These structures show that the DNA end flexibility of the H2A nucleosome is higher than that of the H2A.W nucleosome. In the DDM1-H2A.W nucleosome complex, DDM1 binds to the N-terminal tail of H4 and the nucleosomal DNA and increases the DNA end flexibility of H2A.W nucleosomes. Based on these biochemical and structural results, we propose that DDM1 counters the low accessibility caused by nucleosomes containing H2A.W to enable the maintenance of repressive epigenetic marks on transposons and prevent their activity.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Montagem e Desmontagem da Cromatina , Microscopia Crioeletrônica , Histonas , Nucleossomos , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Nucleossomos/química , Histonas/metabolismo , Histonas/genética , Histonas/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Ligação Proteica , Modelos Moleculares , DNA de Plantas/metabolismo , DNA de Plantas/genéticaRESUMO
The nucleosome is a fundamental unit of chromatin in which about 150 base pairs of DNA are wrapped around a histone octamer. The overlapping di-nucleosome has been proposed as a product of chromatin remodeling around the transcription start site, and previously found as a chromatin unit, in which about 250 base pairs of DNA continuously bind to the histone core composed of a hexamer and an octamer. In the present study, our genome-wide analysis of human cells suggests another higher nucleosome stacking structure, the overlapping tri-nucleosome, which wraps about 300-350 base-pairs of DNA in the region downstream of certain transcription start sites of actively transcribed genes. We determine the cryo-electron microscopy (cryo-EM) structure of the overlapping tri-nucleosome, in which three subnucleosome moieties, hexasome, hexasome, and octasome, are associated by short connecting DNA segments. Small angle X-ray scattering and coarse-grained molecular dynamics simulation analyses reveal that the cryo-EM structure of the overlapping tri-nucleosome may reflect its structure in solution. Our findings suggest that nucleosome stacking structures composed of hexasome and octasome moieties may be formed by nucleosome remodeling factors around transcription start sites for gene regulation.
Assuntos
Histonas , Nucleossomos , Humanos , Nucleossomos/genética , Microscopia Crioeletrônica , Histonas/genética , Cromatina , DNA/genéticaRESUMO
The human RAD52 protein, which forms an oligomeric ring structure, is involved in DNA double-strand break repair. The N-terminal half of RAD52 is primarily responsible for self-oligomerisation and DNA binding. Crystallographic studies have revealed the detailed structure of the N-terminal half. However, only low-resolution structures have been reported for the full-length protein, and thus the structural role of the C-terminal half in self-oligomerisation has remained elusive. In this study, we determined the solution structure of the human RAD52 protein by cryo-electron microscopy (cryo-EM), at an average resolution of 3.5 Å. The structure revealed an undecameric ring that is nearly identical to the crystal structures of the N-terminal half. The cryo-EM map for the C-terminal half was poorly defined, indicating that the region is intrinsically disordered. The present cryo-EM structure provides important insights into the mechanistic roles played by the N-terminal and C-terminal halves of RAD52 during DNA double-strand break repair.
Assuntos
Proteínas de Ligação a DNA , DNA , Humanos , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/metabolismo , DNA/genética , Reparo do DNARESUMO
Histone H3.8 is a non-allelic human histone H3 variant derived from H3.3. H3.8 reportedly forms an unstable nucleosome, but its structure and biochemical characteristics have not been revealed yet. In the present study, we reconstituted the nucleosome containing H3.8. Consistent with previous results, the H3.8 nucleosome is thermally unstable as compared to the H3.3 nucleosome. The entry/exit DNA regions of the H3.8 nucleosome are more accessible to micrococcal nuclease than those of the H3.3 nucleosome. Nucleosome transcription assays revealed that the RNA polymerase II (RNAPII) pausing around the superhelical location (SHL) -1 position, which is about 60 base pairs from the nucleosomal DNA entry site, is drastically alleviated. On the other hand, the RNAPII pausing around the SHL(-5) position, which is about 20 base pairs from the nucleosomal DNA entry site, is substantially increased. The cryo-electron microscopy structure of the H3.8 nucleosome explains the mechanisms of the enhanced accessibility of the entry/exit DNA regions, reduced thermal stability and altered RNAPII transcription profile.
Assuntos
Histonas , Nucleossomos , Humanos , Histonas/genética , Microscopia Crioeletrônica , DNA/química , RNA Polimerase II/metabolismoRESUMO
In transcription-coupled repair (TCR), transcribing RNA polymerase II (RNAPII) stalls at a DNA lesion and recruits TCR proteins to the damaged site. However, the mechanism by which RNAPII recognizes a DNA lesion in the nucleosome remains enigmatic. In the present study, we inserted an apurinic/apyrimidinic DNA lesion analogue, tetrahydrofuran (THF), in the nucleosomal DNA, where RNAPII stalls at the SHL(-4), SHL(-3.5), and SHL(-3) positions, and determined the structures of these complexes by cryo-electron microscopy. In the RNAPII-nucleosome complex stalled at SHL(-3.5), the nucleosome orientation relative to RNAPII is quite different from those in the SHL(-4) and SHL(-3) complexes, which have nucleosome orientations similar to naturally paused RNAPII-nucleosome complexes. Furthermore, we found that an essential TCR protein, Rad26 (CSB), enhances the RNAPII processivity, and consequently augments the DNA damage recognition efficiency of RNAPII in the nucleosome. The cryo-EM structure of the Rad26-RNAPII-nucleosome complex revealed that Rad26 binds to the stalled RNAPII through a novel interface, which is completely different from those previously reported. These structures may provide important information to understand the mechanism by which RNAPII recognizes the nucleosomal DNA lesion and recruits TCR proteins to the stalled RNAPII on the nucleosome.
Assuntos
Nucleossomos , RNA Polimerase II , Transcrição Gênica , Microscopia Crioeletrônica , DNA/metabolismo , Reparo do DNA , Nucleotídeos , RNA Polimerase II/metabolismoRESUMO
RAD51 is a key factor in homologous recombination (HR) and plays an essential role in cellular proliferation by repairing DNA damage during replication. The assembly of RAD51 at DNA damage is strictly controlled by RAD51 mediators, including BRCA1 and BRCA2. We found that human RAD51 directly binds GEMIN2/SIP1, a protein involved in spliceosome biogenesis. Biochemical analyses indicated that GEMIN2 enhances the RAD51-DNA complex formation by inhibiting RAD51 dissociation from DNA, and thereby stimulates RAD51-mediated homologous pairing. GEMIN2 also enhanced the RAD51-mediated strand exchange, when RPA was pre-bound to ssDNA before the addition of RAD51. To analyze the function of GEMIN2, we depleted GEMIN2 in the chicken DT40 line and in human cells. The loss of GEMIN2 reduced HR efficiency and resulted in a significant decrease in the number of RAD51 subnuclear foci, as observed in cells deficient in BRCA1 and BRCA2. These observations and our biochemical analyses reveal that GEMIN2 regulates HR as a novel RAD51 mediator.
Assuntos
Quebras de DNA de Cadeia Dupla , Rad51 Recombinase/metabolismo , Recombinação Genética , Proteínas do Complexo SMN/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Galinhas , DNA/metabolismo , Reparo do DNA , HumanosRESUMO
Chromatin is a dynamic molecular complex composed of DNA and proteins that package the DNA in the nucleus of eukaryotic cells. The basic structural unit of chromatin is the nucleosome core particle, composed of ~150 base pairs of genomic DNA wrapped around a histone octamer containing two copies each of four histones, H2A, H2B, H3, and H4. Individual nucleosome core particles are connected by short linker DNAs, forming a nucleosome array known as a beads-on-a-string fiber. Higher-order structures of chromatin are closely linked to nuclear events such as replication, transcription, recombination, and repair. Recently, a variety of chromatin structures have been determined by single-particle cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET), and their structural details have provided clues about the chromatin architecture functions in the cell. In this review, we highlight recent cryo-EM structural studies of a fundamental chromatin unit to clarify the functions of chromatin.