Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Commun Med (Lond) ; 4(1): 93, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762630

RESUMO

BACKGROUND: Adolescents and young adult (AYA) patients with soft tissue tumours including sarcomas are an underserved group with disparities in treatment outcomes. METHODS: To define the molecular features between AYA and older adult (OA) patients, we analysed the proteomic profiles of a large cohort of soft tissue tumours across 10 histological subtypes (AYA n = 66, OA n = 243), and also analysed publicly available functional genomic data from soft tissue tumour cell lines (AYA n = 5, OA n = 8). RESULTS: Biological hallmarks analysis demonstrates that OA tumours are significantly enriched in MYC targets compared to AYA tumours. By comparing the patient-level proteomic data with functional genomic profiles from sarcoma cell lines, we show that the mRNA splicing pathway is an intrinsic vulnerability in cell lines from OA patients and that components of the spliceosome complex are independent prognostic factors for metastasis free survival in AYA patients. CONCLUSIONS: Our study highlights the importance of performing age-specific molecular profiling studies to identify risk stratification tools and targeted agents tailored for the clinical management of AYA patients.


Soft tissue tumours are cancers that develop in the connective and supporting tissues of the body, such as muscle or fat. These tumours arise in patients across the entire age range. However, improvements in survival outcomes in adolescent and young adult (AYA) patients have lagged behind outcomes in older adults (OA) and children. To better understand the biology of AYA patients with soft tissue tumours, we analysed protein profiles across 10 different types. We identified biological differences between AYA and OA patients and report an age-specific signature that can potentially be used to help predict which AYA patients are more likely to have aggressive cancers that will spread to other parts of the body. Our study highlights the importance of performing age-specific studies to identify new tools to predict patient outcomes and potentially find more suitable treatments.

2.
Clin Cancer Res ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38810090

RESUMO

PURPOSE: The landscape of extracellular matrix (ECM) alterations in soft tissue sarcomas (STS) remains poorly characterised. We aimed to investigate the tumour ECM and adhesion signalling networks present in STS and their clinical implications. EXPERIMENTAL DESIGN: Proteomic and clinical data from 321 patients across 11 histological subtypes were analysed to define ECM and integrin adhesion networks. Subgroup analysis was performed in leiomyosarcomas (LMS), dedifferentiated liposarcomas (DDLPS) and undifferentiated pleiomorphic sarcomas (UPS). RESULTS: This analysis defined subtype-specific ECM profiles including enrichment of basement membrane proteins in LMS and ECM proteases in UPS. Across the cohort, we identified three distinct co-regulated ECM networks which are associated with tumour malignancy grade and histological subtype. Comparative analysis of LMS cell line and patient proteomic data identified the LCP1 cytoskeletal protein as a prognostic factor in LMS. Characterisation of ECM network events in DDLPS revealed three subtypes with distinct oncogenic signalling pathways and survival outcomes. Evaluation of the DDLPS subtype with the poorest prognosis nominates ECM remodelling proteins as candidate anti-stromal therapeutic targets. Finally, we define a proteoglycan signature which is an independent prognostic factor for overall survival in DDLPS and UPS. CONCLUSIONS: STS comprise heterogeneous ECM signalling networks and matrix-specific features have utility for risk stratification and therapy selection which could in future guide precision medicine in these rare cancers.

3.
Clin Cancer Res ; 30(6): 1079-1092, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37916971

RESUMO

Epithelioid sarcoma (EpS) is an ultra-rare malignant soft-tissue cancer mostly affecting adolescents and young adults. EpS often exhibits an unfavorable clinical course with fatal outcome in ∼50% of cases despite aggressive multimodal therapies combining surgery, chemotherapy, and irradiation. EpS is traditionally classified in a more common, less aggressive distal (classic) type and a rarer aggressive proximal type. Both subtypes are characterized by a loss of nuclear INI1 expression, most often following homozygous deletion of its encoding gene, SMARCB1-a core subunit of the SWI/SNF chromatin remodeling complex. In 2020, the EZH2 inhibitor tazemetostat was the first targeted therapy approved for EpS, raising new hopes. Still, the vast majority of patients did not benefit from this drug or relapsed rapidly. Further, other recent therapeutic modalities, including immunotherapy, are only effective in a fraction of patients. Thus, novel strategies, specifically targeted to EpS, are urgently needed. To accelerate translational research on EpS and eventually boost the discovery and development of new diagnostic tools and therapeutic options, a vibrant translational research community has formed in past years and held two international EpS digital expert meetings in 2021 and 2023. This review summarizes our current understanding of EpS from the translational research perspective and points to innovative research directions to address the most pressing questions in the field, as defined by expert consensus and patient advocacy groups.


Assuntos
Sarcoma , Fatores de Transcrição , Adolescente , Adulto Jovem , Humanos , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/genética , Proteínas Cromossômicas não Histona/genética , Homozigoto , Consenso , Deleção de Sequência , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Sarcoma/diagnóstico , Sarcoma/genética , Sarcoma/terapia
4.
Int J Biochem Cell Biol ; 157: 106383, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36736718

RESUMO

Desmoplastic small round cell tumour (DSRCT) is an ultra-rare soft tissue sarcoma that is characterised by aggressive disease and dismal patient outcomes. Despite multi-modal therapy, prognosis remains poor and there are currently no effective targeted therapies available for patients with this disease. Advances in comprehensive molecular profiling approaches including next generation sequencing and proteomics hold the promise of identifying new therapeutic targets and biomarkers. In this review, we provide an overview of the current status of molecular profiling studies in DSRCT patient specimens and cell lines, highlighting the key genomic, epigenetic and proteomic findings that have contributed to our biological knowledge base of this recalcitrant disease. In-depth analysis of these molecular profiles has led to the identification of promising novel and repurposed candidate therapies that are suitable for translation into clinical trials. We further provide a perspective on how future integrated studies including proteogenomics could further enrich our understanding of this ultra-rare entity and deliver progress that will ultimately impact the outcomes of patients with DSRCT.


Assuntos
Tumor Desmoplásico de Pequenas Células Redondas , Humanos , Tumor Desmoplásico de Pequenas Células Redondas/genética , Tumor Desmoplásico de Pequenas Células Redondas/tratamento farmacológico , Tumor Desmoplásico de Pequenas Células Redondas/patologia , Proteômica , Biomarcadores
5.
Nat Commun ; 14(1): 3834, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386008

RESUMO

Soft tissue sarcomas (STS) are rare and diverse mesenchymal cancers with limited treatment options. Here we undertake comprehensive proteomic profiling of tumour specimens from 321 STS patients representing 11 histological subtypes. Within leiomyosarcomas, we identify three proteomic subtypes with distinct myogenesis and immune features, anatomical site distribution and survival outcomes. Characterisation of undifferentiated pleomorphic sarcomas and dedifferentiated liposarcomas with low infiltrating CD3 + T-lymphocyte levels nominates the complement cascade as a candidate immunotherapeutic target. Comparative analysis of proteomic and transcriptomic profiles highlights the proteomic-specific features for optimal risk stratification in angiosarcomas. Finally, we define functional signatures termed Sarcoma Proteomic Modules which transcend histological subtype classification and show that a vesicle transport protein signature is an independent prognostic factor for distant metastasis. Our study highlights the utility of proteomics for identifying molecular subgroups with implications for risk stratification and therapy selection and provides a rich resource for future sarcoma research.


Assuntos
Hemangiossarcoma , Leiomiossarcoma , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Proteômica , Sarcoma/genética , Leiomiossarcoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA