Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bull Math Biol ; 86(5): 46, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528167

RESUMO

Alzheimer's disease (AD) is believed to occur when abnormal amounts of the proteins amyloid beta and tau aggregate in the brain, resulting in a progressive loss of neuronal function. Hippocampal neurons in transgenic mice with amyloidopathy or tauopathy exhibit altered intrinsic excitability properties. We used deep hybrid modeling (DeepHM), a recently developed parameter inference technique that combines deep learning with biophysical modeling, to map experimental data recorded from hippocampal CA1 neurons in transgenic AD mice and age-matched wildtype littermate controls to the parameter space of a conductance-based CA1 model. Although mechanistic modeling and machine learning methods are by themselves powerful tools for approximating biological systems and making accurate predictions from data, when used in isolation these approaches suffer from distinct shortcomings: model and parameter uncertainty limit mechanistic modeling, whereas machine learning methods disregard the underlying biophysical mechanisms. DeepHM addresses these shortcomings by using conditional generative adversarial networks to provide an inverse mapping of data to mechanistic models that identifies the distributions of mechanistic modeling parameters coherent to the data. Here, we demonstrated that DeepHM accurately infers parameter distributions of the conductance-based model on several test cases using synthetic data generated with complex underlying parameter structures. We then used DeepHM to estimate parameter distributions corresponding to the experimental data and infer which ion channels are altered in the Alzheimer's mouse models compared to their wildtype controls at 12 and 24 months. We found that the conductances most disrupted by tauopathy, amyloidopathy, and aging are delayed rectifier potassium, transient sodium, and hyperpolarization-activated potassium, respectively.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Tauopatias , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Conceitos Matemáticos , Modelos Biológicos , Células Piramidais/fisiologia , Camundongos Transgênicos , Potássio , Modelos Animais de Doenças
2.
Neurobiol Dis ; 182: 106151, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37172910

RESUMO

In the early stages of Alzheimer's disease (AD), the accumulation of the peptide amyloid-ß (Aß) damages synapses and disrupts neuronal activity, leading to the disruption of neuronal oscillations associated with cognition. This is thought to be largely due to impairments in CNS synaptic inhibition, particularly via parvalbumin (PV)-expressing interneurons that are essential for generating several key oscillations. Research in this field has largely been conducted in mouse models that over-express humanised, mutated forms of AD-associated genes that produce exaggerated pathology. This has prompted the development and use of knock-in mouse lines that express these genes at an endogenous level, such as the AppNL-G-F/NL-G-F mouse model used in the present study. These mice appear to model the early stages of Aß-induced network impairments, yet an in-depth characterisation of these impairments in currently lacking. Therefore, using 16 month-old AppNL-G-F/NL-G-F mice, we analysed neuronal oscillations found in the hippocampus and medial prefrontal cortex (mPFC) during awake behaviour, rapid eye movement (REM) and non-REM (NREM) sleep to assess the extent of network dysfunction. No alterations to gamma oscillations were found to occur in the hippocampus or mPFC during either awake behaviour, REM or NREM sleep. However, during NREM sleep an increase in the power of mPFC spindles and decrease in the power of hippocampal sharp-wave ripples was identified. The latter was accompanied by an increase in the synchronisation of PV-expressing interneuron activity, as measured using two-photon Ca2+ imaging, as well as a decrease in PV-expressing interneuron density. Furthermore, although changes were detected in local network function of mPFC and hippocampus, long-range communication between these regions appeared intact. Altogether, our results suggest that these NREM sleep-specific impairments represent the early stages of circuit breakdown in response to amyloidopathy.


Assuntos
Doença de Alzheimer , Interneurônios , Sono , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Interneurônios/metabolismo , Camundongos Transgênicos , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo
3.
Mol Cell Neurosci ; 104: 103482, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32171922

RESUMO

Dystrophin deficiency is associated with alterations in cell physiology. The functional consequences of dystrophin deficiency are particularly severe for muscle physiology, as observed in Duchenne muscle dystrophy (DMD). DMD is caused by the absence of a 427 kDa isoform of dystrophin. However, in addition to muscular dystrophy symptoms, DMD is frequently associated with memory and attention deficits and epilepsy. While this may be associated with a role for dystrophin in neuronal physiology, it is not clear what neuronal alterations are linked with DMD. Our work shows that CA1 pyramidal neurons from DBA/2J-mdx mice have increased afterhyperpolarization compared to WT controls. All the other electrotonic and electrogenic membrane properties were unaffected by this genotype. Finally, basal synaptic transmission, short-term and long-term synaptic plasticity at Schaffer collateral to CA1 glutamatergic synapses were unchanged between mdx and WT controls. These data show that the excitatory component of hippocampal activity is largely preserved in DBA/2J-mdx mice. Further studies, extending the investigation to the inhibitory GABAergic function, may provide a more complete picture of the functional, network alterations underlying impaired cognition in DMD. In addition, the investigation of changes in neuronal single conductance biophysical properties associated with this genotype, is required to identify the functional alterations associated with dystrophin deficiency and clarify its role in neuronal function.


Assuntos
Potenciais de Ação , Hipocampo/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Potenciais Sinápticos , Animais , Células Cultivadas , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Sinapses/metabolismo , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo
4.
Analyst ; 143(24): 6095-6102, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30460364

RESUMO

A recent investigation on the architecture and chemical composition of amyloid-ß (Aß) plaques in ex vivo histological sections of an Aß-overexpressing transgenic mouse hippocampus has shed light on the infrared light signature of cell-activation related biomarkers of Alzheimer's disease. A correlation was highlighted between the biomechanical properties detected by Brillouin microscopy and the molecular make-up of Aß plaques provided by FTIR spectroscopic imaging and Raman microscopy (with correlative immunofluorescence imaging) in this animal model of the disease. In the Brillouin spectra of heterogeneous materials such as biomedical samples, peaks are likely the result of multiple contributions, more or less overlaid on a spatial and spectral scale. The ability to disentangle these contributions is very important as it may give access to discrete components that would otherwise be buried within the Brillouin peak envelope. Here, we applied an unsupervised non-negative matrix factorization method to analyse the spontaneous Brillouin microscopy maps of Aß plaques in transgenic mouse hippocampal sections. The method has already been proven successful in decomposing chemical images and is applied here for the first time to acoustic maps acquired with a Fabry-Perot Brillouin microscope. We extracted and visualised a decrease in tissue rigidity from the core through to the periphery of the plaque, with spatially distinct components that we assigned to specific entities. This work demonstrates that it is possible to reveal the structure and mechanical properties of Aß plaques, with details visualized by the projection of the mechanical contrast into a few relevant channels.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Hipocampo/patologia , Microscopia Confocal/métodos , Placa Amiloide/química , Algoritmos , Animais , Elasticidade , Masculino , Camundongos Transgênicos , Viscosidade
5.
Analyst ; 143(4): 850-857, 2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-29230441

RESUMO

Recent work using micro-Fourier transform infrared (µFTIR) imaging has revealed that a lipid-rich layer surrounds many plaques in post-mortem Alzheimer's brain. However, the origin of this lipid layer is not known, nor is its role in the pathogenesis of Alzheimer's disease (AD). Here, we studied the biochemistry of plaques in situ using a model of AD. We combined FTIR, Raman and immunofluorescence images, showing that astrocyte processes co-localise with the lipid ring surrounding many plaques. We used µFTIR imaging to rapidly measure chemical signatures of plaques over large fields of view, and selected plaques for higher resolution analysis with Raman microscopy. Raman maps showed similar lipid rings and dense protein cores as in FTIR images, but also revealed cell bodies. We confirmed the presence of plaques using amylo-glo staining, and detected astrocytes using immunohistochemistry, revealing astrocyte co-localisation with lipid rings. This work is important because it correlates biochemical changes surrounding the plaque with the biological process of astrogliosis.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Lipídeos/análise , Placa Amiloide/diagnóstico por imagem , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Animais , Encéfalo/diagnóstico por imagem , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Hippocampus ; 25(7): 786-97, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25515596

RESUMO

Accumulation of beta-amyloid (Aß) peptides in the human brain is a canonical pathological hallmark of Alzheimer's disease (AD). Recent work in Aß-overexpressing transgenic mice indicates that increased brain Aß levels can be associated with aberrant epileptiform activity. In line with this, such mice can also exhibit altered intrinsic excitability (IE) of cortical and hippocampal neurons: these observations may relate to the increased prevalence of seizures in AD patients. In this study, we examined what changes in IE are produced in hippocampal CA1 pyramidal cells after 2-5 h treatment with an oligomeric preparation of synthetic human Aß 1-42 peptide. Whole cell current clamp recordings were compared between Aß-(500 nM) and vehicle-(DMSO 0.05%) treated hippocampal slices obtained from mice. The soluble Aß treatment did not produce alterations in sub-threshold intrinsic properties, including membrane potential, input resistance, and hyperpolarization activated "sag". Similarly, no changes were noted in the firing profile evoked by 500 ms square current supra-threshold stimuli. However, Aß 500 nM treatment resulted in the hyperpolarization of the action potential (AP) threshold. In addition, treatment with Aß at 500 nM depressed the after-hyperpolarization that followed both a single AP or 50 Hz trains of a number of APs between 5 and 25. These data suggest that acute exposure to soluble Aß oligomers affects IE properties of CA1 pyramidal neurons differently from outcomes seen in transgenic models of amyloidopathy. However, in both chronic and acute models, the IE changes are toward hyperexcitability, reinforcing the idea that amyloidopathy and increased incidence in seizures might be causally related in AD patients.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Peptídeos beta-Amiloides/farmacologia , Região CA1 Hipocampal/citologia , Rede Nervosa/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Células Piramidais/efeitos dos fármacos , Análise de Variância , Animais , Biofísica , Estimulação Elétrica , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp
7.
J Neurophysiol ; 111(5): 1046-55, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335217

RESUMO

The nucleus accumbens (NAc), a major component of the mesolimbic system, is involved in the mediation of reinforcing and addictive properties of many dependence-producing drugs. Glutamatergic synapses within the NAc can express plasticity, including a form of endocannabinoid (eCB)-long-term depression (LTD). Recent evidences demonstrate cross talk between eCB signaling pathways and those of other receptor systems, including serotonin (5-HT); the extensive colocalization of CB1 and 5-HT receptors within the NAc suggests the potential for interplay between them. In the present study, we found that 20-min low-frequency (4 Hz) stimulation (LFS-4Hz) of glutamatergic afferences in rat brain slices induces a novel form of eCB-LTD in the NAc core, which requires 5-HT2 and CB1 receptor activation and L-type voltage-gated Ca(2+) channel opening. Moreover, we found that exogenous 5-HT application (5 µM, 20 min) induces an analogous LTD (5-HT-LTD) at the same synapses, requiring the activation of the same receptors and the opening of the same Ca(2+) channels; LFS-4Hz-LTD and 5-HT-LTD were mutually occlusive. Present results suggest that LFS-4Hz induces the release of 5-HT, which acts at 5-HT2 postsynaptic receptors, increasing Ca(2+) influx through L-type voltage-gated channels and 2-arachidonoylglycerol production and release; the eCB travels retrogradely and binds to presynaptic CB1 receptors, causing a long-lasting decrease of glutamate release, resulting in LTD. These observations might be helpful to understand the neurophysiological mechanisms underlying drug addiction, major depression, and other psychiatric disorders characterized by dysfunction of 5-HT neurotransmission in the NAc.


Assuntos
Endocanabinoides/metabolismo , Depressão Sináptica de Longo Prazo , Núcleo Accumbens/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Receptores 5-HT2 de Serotonina/metabolismo , Serotonina/fisiologia , Animais , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
8.
J Pain ; 25(6): 104466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38218509

RESUMO

Chronic pain presents an enormous personal and economic burden and there is an urgent need for effective treatments. In a mouse model of chronic neuropathic pain, selective silencing of key neurons in spinal pain signalling networks with botulinum constructs resulted in a reduction of pain behaviours associated with the peripheral nerve. However, to establish clinical relevance it was important to know how long this silencing period lasted. Now, we show that neuronal silencing and the concomitant reduction of neuropathic mechanical and thermal hypersensitivity lasts for up to 120d following a single injection of botulinum construct. Crucially, we show that silencing and analgesia can then be reinstated with a second injection of the botulinum conjugate. Here we demonstrate that single doses of botulinum-toxin conjugates are a powerful new way of providing long-term neuronal silencing and pain relief. PERSPECTIVE: This research demonstrates that botulinum-toxin conjugates are a powerful new way of providing long-term neuronal silencing without toxicity following a single injection of the conjugate and have the potential for repeated dosing when silencing reverses.


Assuntos
Modelos Animais de Doenças , Neuralgia , Animais , Camundongos , Neuralgia/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL , Dor Crônica/tratamento farmacológico , Toxinas Botulínicas Tipo A/farmacologia , Toxinas Botulínicas Tipo A/administração & dosagem , Hiperalgesia/tratamento farmacológico , Toxinas Botulínicas/administração & dosagem , Toxinas Botulínicas/farmacologia
9.
Steroids ; 204: 109398, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513983

RESUMO

Estrogen and testosterone are typically thought of as gonadal or adrenal derived steroids that cross the blood brain barrier to signal via both rapid nongenomic and slower genomic signalling pathways. Estrogen and testosterone signalling has been shown to drive interlinked behaviours such as social behaviours and cognition by binding to their cognate receptors in hypothalamic and forebrain nuclei. So far, acute brain slices have been used to study short-term actions of 17ß-estradiol, typically using electrophysiological measures. For example, these techniques have been used to investigate, nongenomic signalling by estrogen such as the estrogen modulation of long-term potentiation (LTP) in the hippocampus. Using a modified method that preserves the slice architecture, we show, for the first time, that acute coronal slices from the prefrontal cortex and from the hypothalamus maintained in aCSF over longer periods i.e. 24 h can be steroidogenic, increasing their secretion of testosterone and estrogen. We also show that the hypothalamic nuclei produce more estrogen and testosterone than the prefrontal cortex. Therefore, this extended acute slice system can be used to study the regulation of steroid production and secretion by discrete nuclei in the brain.


Assuntos
Estradiol , Estrogênios , Camundongos , Animais , Estrogênios/metabolismo , Estradiol/metabolismo , Potenciação de Longa Duração/fisiologia , Testosterona/metabolismo , Esteroides/metabolismo , Hipocampo/metabolismo
10.
J Physiol ; 591(16): 3963-79, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23671159

RESUMO

Synaptic plasticity in perirhinal cortex is essential for recognition memory. Nitric oxide and endocannabinoids (eCBs), which are produced in the postsynaptic cell and act on the presynaptic terminal, are implicated in mechanisms of long-term potentiation (LTP) and long-term depression (LTD) in other brain regions. In this study, we examine these two retrograde signalling cascades in perirhinal cortex synaptic plasticity and in visual recognition memory in the rat. We show that inhibition of NO-dependent signalling prevented both carbachol- and activity (5 Hz)-dependent LTD but not activity (100 Hz theta burst)-dependent LTP in the rat perirhinal cortex in vitro. In contrast, inhibition of the eCB-dependent signalling prevented LTP but not the two forms of LTD in vitro. Local administration into perirhinal cortex of the nitric oxide synthase inhibitor NPA (2 µm) disrupted acquisition of long-term visual recognition memory. In contrast, AM251 (10 µm), a cannabinoid receptor 1 antagonist, did not impair visual recognition memory. The results of this study demonstrate dissociation between putative retrograde signalling mechanisms in LTD and LTP in perirhinal cortex. Thus, LTP relies on cannabinoid but not NO signalling, whilst LTD relies on NO- but not eCB-dependent signalling. Critically, these results also establish, for the first time, that NO- but not eCB-dependent signalling is important in perirhinal cortex-dependent visual recognition memory.


Assuntos
Depressão Sináptica de Longo Prazo/fisiologia , Óxido Nítrico/fisiologia , Reconhecimento Psicológico/fisiologia , Percepção Visual/fisiologia , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides/fisiologia , Técnicas In Vitro , Masculino , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Endogâmicos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Lobo Temporal/fisiologia
11.
Eur J Neurosci ; 36(7): 2941-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22845676

RESUMO

Evidence suggests that the acquisition of recognition memory depends upon CREB-dependent long-lasting changes in synaptic plasticity in the perirhinal cortex.The CREB-responsive microRNA miR-132 has been shown to regulate synaptic transmission and we set out to investigate a role for this microRNA in recognition memory and its underlying plasticity mechanisms. To this end we mediated the specific overexpression of miR-132 selectively in the rat perirhinal cortex and demonstrated impairment in short-term recognition memory. This functional deficit was associated with a reduction in both long-term depression and long-term potentiation. These results confirm that microRNAs are key coordinators of the intracellular pathways that mediate experience-dependent changes in the brain. In addition, these results demonstrate a role for miR-132 in the neuronal mechanisms underlying the formation of short-term recognition memory.


Assuntos
Córtex Cerebral/fisiologia , Regulação da Expressão Gênica , Potenciação de Longa Duração/genética , Memória de Curto Prazo/fisiologia , MicroRNAs/metabolismo , Reconhecimento Psicológico/fisiologia , Animais , Córtex Cerebral/metabolismo , Potenciais Pós-Sinápticos Excitadores , Células HeLa , Humanos , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , MicroRNAs/genética , Ratos , Ratos Wistar
12.
Adv Healthc Mater ; 11(20): e2200941, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904257

RESUMO

3D cell culture formats more closely resemble tissue architecture complexity than 2D systems, which are lacking most of the cell-cell and cell-microenvironment interactions of the in vivo milieu. Scaffold-based systems integrating natural biomaterials are extensively employed in tissue engineering to improve cell survival and outgrowth, by providing the chemical and physical cues of the natural extracellular matrix (ECM). Using the freeze-drying technique, porous 3D composite scaffolds consisting of poly(3,4-ethylene-dioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS), containing ECM components (i.e., collagen, hyaluronic acid, and laminin) are engineered for hosting neuronal cells. The resulting scaffolds exhibit a highly porous microstructure and good conductivity, determined by scanning electron microscopy and electrochemical impedance spectroscopy, respectively. These supports boast excellent mechanical stability and water uptake capacity, making them ideal candidates for cell infiltration. SH-SY5Y human neuroblastoma cells show enhanced cell survival and proliferation in the presence of ECM compared to PEDOT:PSS alone. Whole-cell patch-clamp recordings acquired from differentiated SHSY5Y cells in the scaffolds demonstrate that ECM constituents promote neuronal differentiation in situ. These findings reinforce the usability of 3D conducting supports as engineered highly biomimetic and functional in vitro tissue-like platforms for drug or disease modeling.


Assuntos
Neuroblastoma , Alicerces Teciduais , Humanos , Materiais Biocompatíveis , Diferenciação Celular , Proliferação de Células , Colágeno/química , Etilenos/análise , Matriz Extracelular/química , Ácido Hialurônico , Laminina , Polímeros , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Microambiente Tumoral
13.
Front Physiol ; 13: 1033216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589427

RESUMO

There is strong evidence that the omega-3 polyunsaturated fatty acids (n-3 PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have cardioprotective effects. n-3 PUFAs cause vasodilation in hypertensive patients, in part controlled by increased membrane conductance to potassium. As KATP channels play a major role in vascular tone regulation and are involved in hypertension, we aimed to verify whether n-3 PUFA-mediated vasodilation involved the opening of KATP channels. We used a murine model in which the KATP channel pore subunit, Kir6.1, is deleted in vascular smooth muscle. The vasomotor response of preconstricted arteries to physiologically relevant concentrations of DHA and EPA was measured using wire myography, using the channel blocker PNU-37883A. The effect of n-3 PUFAs on potassium currents in wild-type native smooth muscle cells was investigated using whole-cell patch clamping. DHA and EPA induced vasodilation in mouse aorta and mesenteric arteries; relaxations in the aorta were sensitive to KATP blockade with PNU-37883A. Endothelium removal didn't affect relaxation to EPA and caused a small but significant inhibition of relaxation to DHA. In the knock-out model, relaxations to DHA and EPA were unaffected by channel knockdown but were still inhibited by PNU-37883A, indicating that the action of PNU-37883A on relaxation may not reflect inhibition of KATP. In native aortic smooth muscle cells DHA failed to activate KATP currents. We conclude that DHA and EPA cause vasodilation in mouse aorta and mesenteric arteries. Relaxations in blocker-treated arteries from knock-out mice demonstrate that KATP channels are not involved in the n-3 PUFA-induced relaxation.

14.
Methods Mol Biol ; 2188: 229-242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33119854

RESUMO

Patch-clamp recordings are a powerful tool for the live measurement of the plasma membrane biophysical properties, with the ability to discriminate fast events such as fast inactivating Na+ currents (<1 ms c.a.). It can be used in virtually every cell-type, including cardiomyocytes, skeletal muscles, neurons, and even epithelial cells and fibroblasts. Voltage-clamp, patch-clamp recordings can be used to measure and characterize the pharmacological and biophysical profile of membrane conductances, including leak, voltage-gated, and ligand-gated ion channels. This technique is particularly useful in studies carried out in cell-lines transfected with the gene expressing the conductance under investigation. However, voltage-clamp measures conducted on the soma of a native, adult neuron, for example in an acute brain slice or in the brain of a live individual, are subject to three major limitations: (1) the branching structure of the neuron causes space-clamp errors, (2) ion channels are differentially expressed across different neuronal compartments (such as soma, dendrites, and axons), and (3) the complex geometry of neurons makes it challenging to calculate current densities. While not preventing the experimenter to conduct patch-clamp, voltage-clamp recordings in native neurons, these limitations make the measures poorly standardized and hence often unusable for testing specific hypotheses.To overcome the limitations outlined above, outside-out, patch-clamp recordings can be carried out instead (See Chap. 1, Sect. 3.5); however, the signal-to-noise ratio in outside-outs from native, adult neurons is usually too low for obtaining accurate measurements.Here we describe how to carry out nucleated, outside-out, somatic, macropatch recordings (from now on abbreviated into "macropatch recordings") to obtain accurate and standardized measures of the biophysical and pharmacological properties of somatic, neuronal membrane conductances.


Assuntos
Neurônios/metabolismo , Técnicas de Patch-Clamp/métodos , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Membrana Celular/metabolismo , Condutividade Elétrica , Potenciais da Membrana , Camundongos , Neurônios/citologia , Técnicas de Patch-Clamp/instrumentação , Ratos
15.
Br J Pharmacol ; 178(4): 860-877, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33283269

RESUMO

Hypertension is often characterised by impaired vasodilation involving dysfunction of multiple vasodilatory mechanisms. ω-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) can reduce blood pressure and vasodilation. In the endothelium, DHA and EPA improve function including increased NO bioavailability. However, animal studies show that DHA- and EPA-mediated vasodilation persists after endothelial removal, indicating a role for vascular smooth muscle cells (VSMCs). The vasodilatory effects of ω-3 PUFAs on VSMCs are mediated via opening of large conductance calcium-activated potassium channels (BKCa ), ATP-sensitive potassium channels (KATP ) and possibly members of the Kv 7 family of voltage-activated potassium channels, resulting in hyperpolarisation and relaxation. ω-3 PUFA actions on BKCa and voltage-gated ion channels involve electrostatic interactions that are dependent on the polyunsaturated acyl tail, cis-geometry of these double bonds and negative charge of the carboxyl headgroup. This suggests structural manipulation of ω-3 PUFA could generate novel, targeted, therapeutic leads.


Assuntos
Ácidos Graxos Ômega-3 , Hipertensão , Animais , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Vasodilatação
16.
Biomolecules ; 11(10)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34680033

RESUMO

Adipose-derived mesenchymal stromal cells (ASCs) are multipotent stem cells which can differentiate into various cell types, including osteocytes and adipocytes. Due to their ease of harvesting, multipotency, and low tumorigenicity, they are a prime candidate for the development of novel interventional approaches in regenerative medicine. ASCs exhibit slow, spontaneous Ca2+ oscillations and the manipulation of Ca2+ signalling via electrical stimulation was proposed as a potential route for promoting their differentiation in vivo. However, the effects of differentiation-inducing treatments on spontaneous Ca2+ oscillations in ASCs are not yet fully characterised. In this study, we used 2-photon live Ca2+ imaging to assess the fraction of cells showing spontaneous oscillations and the frequency of the oscillation (measured as interpeak interval-IPI) in ASCs undergoing osteogenic or adipogenic differentiation, using undifferentiated ASCs as controls. The measurements were carried out at 7, 14, and 21 days in vitro (DIV) to assess the effect of time in culture on Ca2+ dynamics. We observed that both time and differentiation treatment are important factors associated with a reduced fraction of cells showing Ca2+ oscillations, paralleled by increased IPI times, in comparison with untreated ASCs. Both adipogenic and osteogenic differentiation resulted in a reduction in Ca2+ dynamics, such as the fraction of cells showing intracellular Ca2+ oscillations and their frequency. Adipogenic differentiation was associated with a more pronounced reduction of Ca2+ dynamics compared to cells differentiating towards the osteogenic fate. Changes in Ca2+ associated oscillations with a specific treatment had already occurred at 7 DIV. Finally, we observed a reduction in Ca2+ dynamics over time in untreated ASCs. These data suggest that adipogenic and osteogenic differentiation cell fates are associated with specific changes in spontaneous Ca2+ dynamics over time. While this observation is interesting and provides useful information to understand the functional correlates of stem cell differentiation, further studies are required to clarify the molecular and mechanistic correlates of these changes. This will allow us to better understand the causal relationship between Ca2+ dynamics and differentiation, potentially leading to the development of novel, more effective interventions for both bone regeneration and control of adipose growth.


Assuntos
Adipogenia/genética , Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Osteogênese/genética , Adipócitos/citologia , Cálcio/metabolismo , Sinalização do Cálcio/genética , Linhagem Celular , Linhagem da Célula/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteócitos/citologia , Medicina Regenerativa
17.
Sci Rep ; 10(1): 17627, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077823

RESUMO

The dynamics of the resting brain exhibit transitions between a small number of discrete networks, each remaining stable for tens to hundreds of milliseconds. These functional microstates are thought to be the building blocks of spontaneous consciousness. The electroencephalogram (EEG) is a useful tool for imaging microstates, and EEG microstate analysis can potentially give insight into altered brain dynamics underpinning cognitive impairment in disorders such as Alzheimer's disease (AD). Since EEG is non-invasive and relatively inexpensive, EEG microstates have the potential to be useful clinical tools for aiding early diagnosis of AD. In this study, EEG was collected from two independent cohorts of probable AD and cognitively healthy control participants, and a cohort of mild cognitive impairment (MCI) patients with four-year clinical follow-up. The microstate associated with the frontoparietal working-memory/attention network was altered in AD due to parietal inactivation. Using a novel measure of complexity, we found microstate transitioning was slower and less complex in AD. When combined with a spectral EEG measure, microstate complexity could classify AD with sensitivity and specificity > 80%, which was tested on an independent cohort, and could predict progression from MCI to AD in a small preliminary test cohort of 11 participants. EEG microstates therefore have potential to be a non-invasive functional biomarker of AD.


Assuntos
Doença de Alzheimer/diagnóstico , Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Eletroencefalografia/métodos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Diagnóstico Precoce , Feminino , Humanos , Masculino , Sensibilidade e Especificidade
18.
Sci Rep ; 9(1): 14837, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619689

RESUMO

Alzheimer's disease (AD)-associated synaptic dysfunction drives the progression of pathology from its earliest stages. Amyloid ß (Aß) species, both soluble and in plaque deposits, have been causally related to the progressive, structural and functional impairments observed in AD. It is, however, still unclear how Aß plaques develop over time and how they progressively affect local synapse density and turnover. Here we observed, in a mouse model of AD, that Aß plaques grow faster in the earlier stages of the disease and if their initial area is >500 µm2; this may be due to deposition occurring in the outer regions of the plaque, the plaque cloud. In addition, synaptic turnover is higher in the presence of amyloid pathology and this is paralleled by a reduction in pre- but not post-synaptic densities. Plaque proximity does not appear to have an impact on synaptic dynamics. These observations indicate an imbalance in the response of the pre- and post-synaptic terminals and that therapeutics, alongside targeting the underlying pathology, need to address changes in synapse dynamics.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Placa Amiloide/patologia , Densidade Pós-Sináptica/patologia , Terminações Pré-Sinápticas/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Mutação
19.
Dementia (London) ; 17(8): 1055-1063, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30373455

RESUMO

Preclinical science research focuses on the study of physiological systems regulating body functions, and how they are dysregulated in disease, in a non-human setting. For example, cells in a dish, computer simulations or animals. Scientific procedures traditionally involve a specialist scientist developing a hypothesis and subsequently testing it using an experimental set-up. The results are then disseminated to the wider scientific community, following peer review and only at the last stage the news will reach the general, lay public. In the last few years, some research funding institutions have promoted a different model, with the direct involvement of members of the public in the research co-creation, from the hypothesis development, to the grant revision, project monitoring and results communication. We personally experienced this model and brought it to a further level by producing a movie. Animal research is a very controversial topic as, while still being necessary for the investigation of body functions, it brings about issues related to the ethics, the regulation and the practical execution of experimental procedures on animals. Here we discuss the different stages of the ideation, production and outcomes of the movie 'Of Mice and Dementia', a filmed conversation on animal experimentation in dementia research. The conversation was between scientists and lay people with a direct experience of dementia.


Assuntos
Demência/fisiopatologia , Modelos Animais de Doenças , Filmes Cinematográficos , Pesquisa , Animais , Comunicação , Participação da Comunidade/métodos , Ética em Pesquisa , Humanos , Camundongos
20.
J Innov Opt Health Sci ; 10(6)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29151920

RESUMO

Amyloidopathy is one of the most prominent hallmarks of Alzheimer's disease (AD), the leading cause of dementia worldwide, and is characterized by the accumulation of amyloid plaques in the brain parenchyma. The plaques consist of abnormal deposits mainly composed of an aggregation-prone protein fragment, ß-amyloid 1-40/1-42, into the extracellular matrix. Brillouin microspectroscopy is an all-optical contactless technique that is based on the interaction between visible light and longitudinal acoustic waves or phonons, giving access to the viscoelasticity of a sample on a subcellular scale. Here, we describe the first application of micromechanical mapping based on Brillouin scattering spectroscopy to probe the stiffness of individual amyloid plaques in the hippocampal part of the brain of a ß-amyloid overexpressing transgenic mouse. Correlative analysis based on Brillouin and Raman microspectroscopy showed that amyloid plaques have a complex structure with a rigid core of ß-pleated sheet conformation (ß-amyloid) protein surrounded by a softer ring-shaped region richer in lipids and other protein conformations. These preliminary results give a new insight into the plaque biophysics and biomechanics, and a valuable contrast mechanism for the study and diagnosis of amyloidopathy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA