Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Food Microbiol ; 112: 104231, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906319

RESUMO

Bacillus cereus phylogenetic group III and IV strains are commonly associated with food products and cause toxin mediated foodborne diseases. These pathogenic strains have been identified from milk and dairy products, such as reconstituted infant formula and several cheeses. Paneer is a fresh, soft cheese originating from India that is prone to foodborne pathogen contamination, such as by Bacillus cereus. However, there are no reported studies of B. cereus toxin formation in paneer or predictive models quantifying growth of the pathogen in paneer under different environmental conditions. This study assessed enterotoxin-producing potential of B. cereus group III and IV strains, isolated from dairy farm environments, in fresh paneer. Growth of a four-strain cocktail of toxin-producing B. cereus strains was measured in freshly prepared paneer incubated at 5-55 °C and modelled using a one-step parameter estimation combined with bootstrap re-sampling to generate confidence intervals for model parameters. The pathogen grew in paneer between 10 and 50 °C and the developed model fit the observed data well (R2 = 0.972, RMSE = 0.321 log10 CFU/g). The cardinal parameters for B. cereus growth in paneer along with the 95% confidence intervals were: µopt 0.812 log10 CFU/g/h (0.742, 0.917); Topt is 44.177 °C (43.16, 45.49); Tmin is 4.405 °C (3.973, 4.829); Tmax is 50.676 °C (50.367, 51.144). The model developed can be used in food safety management plans and risk assessments to improve safety of paneer while also adding to limited information on B. cereus growth kinetics in dairy products.


Assuntos
Bacillus cereus , Bacillus , Humanos , Animais , Microbiologia de Alimentos , Filogenia , Enterotoxinas , Leite/química
2.
Food Microbiol ; 96: 103718, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33494895

RESUMO

Food regulatory authorities permit the use of Time as Public Health Control (TPHC) for handling foods that potentially support the growth of pathogenic bacteria. Considering the widespread use of TPHC in food service operations, few reports quantitatively describe potential pathogen growth when these protocols are implemented. A worst-case growth rate model was built from the highest growth rates predicted by ComBase broth-based models for six pathogens. A separate worst-case growth model was constructed from growth rates in ComBase database records. The maximum estimated pathogen growth in 4 h, assuming no lag phase, ranged from 0.006 log CFU at 5 °C to 6.16 log CFU at 44 °C, with 3.1 log CFU at 25 °C. In addition, pathogen growth when implementing TPHC could exceed the 1- and 3-log limits recommended for food challenge tests. The use of predictive models in development of TPHC criteria may provide more fail-safe strategies for managing microbial hazards in potentially hazardous food. This strategy could also reduce food waste and promote the use of temperature sensors in food supply chains.


Assuntos
Bactérias/química , Bactérias/crescimento & desenvolvimento , Saúde Pública , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Humanos , Cinética , Modelos Biológicos , Temperatura
3.
Food Microbiol ; 97: 103738, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33653517

RESUMO

Paneer is a fresh, soft ready-to-eat cheese that is susceptible to Listeria monocytogenes contamination, exemplified by product recalls in Australia, Canada, and the USA. Previous research demonstrates that L. monocytogenes grows in paneer, however there are no paneer-specific predictive models that quantify the effect of environmental conditions on L. monocytogenes viability. This study measured the viability of a five-strain cocktail of L. monocytogenes in freshly prepared paneer incubated at 4-40 °C. Growth rates were fitted with the extended Ratkowsky square root model, with growth rates ranging from 0.014 to 0.352 log10 CFU/h. In comparison with published models, only the ComBase L. monocytogenes broth model acceptably predicted growth (Bf = 1.01, Af = 1.12) versus the developed model. The influence of paneer pH (5.0-6.0) and storage temperature (41-45 °C) on L. monocytogenes growth at the upper temperature growth boundary was described using a logistic model. These models provide quantitative tools to improve the safety of paneer processing conditions, shelf-life estimation, food safety management plans, and risk assessment.


Assuntos
Queijo/microbiologia , Listeria monocytogenes/química , Listeria monocytogenes/crescimento & desenvolvimento , Queijo/análise , Contagem de Colônia Microbiana , Armazenamento de Alimentos , Concentração de Íons de Hidrogênio , Cinética , Viabilidade Microbiana , Modelos Biológicos , Temperatura
4.
Food Microbiol ; 91: 103515, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32539954

RESUMO

Carnobacterium maltaromaticum, Brochothrix thermosphacta and Serratia liquefaciens are common spoilage organisms found within the microbiome of refrigerated vacuum-packaged (VP) beef. Extending and predicting VP beef shelf-life requires knowledge about how spoilage bacteria growth is influenced by environmental extrinsic and intrinsic factors. Multifactorial effects of pH, lactic acid (LA) and glucose on growth kinetics were quantified for C. maltaromaticum, B. thermosphacta and S. liquefaciens within a heat shrink-wrapped VP commercial film containing a simulated beef medium. LA, pH, and undissociated lactic acid (UDLA) significantly affected bacterial growth rate (p < 0.001), whereas 5.55 mM glucose produced a marginal effect. At 1.12 mM UDLA, growth rate and maximum population density decreased 20.9 and 3.5%, 56 and 7%, and 11 and 2% for C. maltaromaticum, B. thermosphacta, and S. liquefaciens, respectively.


Assuntos
Bactérias/crescimento & desenvolvimento , Embalagem de Alimentos/métodos , Glucose/metabolismo , Ácido Láctico/metabolismo , Carne/microbiologia , Animais , Brochothrix/efeitos dos fármacos , Brochothrix/crescimento & desenvolvimento , Carnobacterium/crescimento & desenvolvimento , Bovinos , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Armazenamento de Alimentos , Concentração de Íons de Hidrogênio , Cinética , Serratia liquefaciens/crescimento & desenvolvimento , Especificidade da Espécie , Vácuo
5.
Foodborne Pathog Dis ; 17(2): 98-118, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31647328

RESUMO

In Mexico, information of Salmonella enterica cases linked to food consumption is scarce. The objective of this article was to assess how S. enterica affect public health in Mexico. To conduct this study, data on the epidemiology of nontyphoidal S. enterica (NTS), Salmonella Typhi, and Salmonella Paratyphi A collected from 2000 to 2017 through the National Epidemiological Surveillance System of Mexico (Sistema Nacional de Vigilancia Epidemiológica de Mexico [SINAVE]) were used. Geographical distribution, season, age groups, and gender were variables considered to analyze S. enterica incidence. An estimation of cases caused by S. enterica in Mexico was calculated while considering data underestimation and the proportion of foodborne diseases. Information of the prevalence of the pathogen in food and the antimicrobial resistance of isolates from food and human cases were obtained from published studies. Outbreaks of S. enterica derived from imported Mexican products in the Unites States are discussed. In 2017, the numbers of reported cases of NTS (92,013) were two and seven times higher than the reported cases of Salmonella Typhi (45,280) and Salmonella Paratyphi A (12, 458). The NTS incidence was higher in lower socioeconomic Mexican regions. The gaps in the surveillance system make it impossible to establish a reliable tendency among age groups, geographical distribution, and gender. In 2017, the estimated frequency of NTS foodborne cases was 49 times higher than that reported in SINAVE, whereas for Salmonella Typhi and Salmonella Paratyphi A it was 23 times. Fresh meat showed the highest prevalence of S. enterica, and most of their isolates had multidrug resistance. Salmonella Typhimurium was the most common serotype isolated from human cases and food. Food safety agencies in Mexico need to prioritize efforts and resources to establish guidelines to ensure the absence of S. enterica in food.


Assuntos
Doenças Transmitidas por Alimentos/epidemiologia , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/microbiologia , Salmonella enterica/isolamento & purificação , Salmonella paratyphi A/isolamento & purificação , Salmonella typhi/isolamento & purificação , Farmacorresistência Bacteriana Múltipla , Inocuidade dos Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Carne/microbiologia , México/epidemiologia , Prevalência , Verduras/microbiologia
6.
Food Microbiol ; 75: 90-94, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30056968

RESUMO

Food products move through complex supply chains, which require effective logistics to ensure food safety and to maximize shelf-life. Predictive models offer an efficient means to monitor and manage the safety and quality of perishable foods, however models require environmental data to estimate changes in microbial growth and sensory attributes. Currently, several companies produce Time-Temperature Indicators that react at rates that closely approximate predictive models; these devices are simple and cost-effective for food companies. However, even greater outcomes could be realized using sensors that transfer data to predictive models in real-time. This report describes developments in predictive models designed for supply chain management, as well as advances in environmental sensors. Important innovation can be realized in both supply chain logistics and food safety management by integrating these technologies.


Assuntos
Armazenamento de Alimentos/estatística & dados numéricos , Abastecimento de Alimentos/estatística & dados numéricos , Teorema de Bayes , Contaminação de Alimentos/estatística & dados numéricos , Humanos , Modelos Estatísticos , Temperatura
7.
Food Microbiol ; 75: 126-132, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30056957

RESUMO

Foodborne pathogens cause an important public health burden, which is estimated in 600 million cases and more than 400,000 deaths, globally every year. The most susceptible populations, such as children under the age of five, the elderly and immunocompromised, account for the majority of the deaths. Food safety incidents, outbreaks, sporadic cases, and recalls have recognized economic impact, estimated at 7 billion every year in the US. Food safety has become a priority, and the implementation of preventive controls and monitoring systems has raised the development of new tools to detect and prevent pathogens in the food chain. Detection tools have evolved quickly, from rapid testing methods to application of genomics and metagenomics. Importantly, to reduce food safety hazards at food processing, the food chain needs to be seen from farm to fork. This review summarized the main findings discussed during the 2016 OECD-sponsored symposium on food safety. These include i) trends in food safety that embrace the need to implement new tools in detection and prevention, ii) the very rapid evolution of technologies to detect foodborne pathogens, iii) holistic approaches to prevent pathogens require a whole chain approach, and iv) key pillars to facilitate global implementations of new tools in food safety.


Assuntos
Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos/métodos , Doenças Transmitidas por Alimentos/prevenção & controle , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Contaminação de Alimentos/legislação & jurisprudência , Manipulação de Alimentos/legislação & jurisprudência , Manipulação de Alimentos/normas , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Metagenômica
8.
Appl Environ Microbiol ; 83(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986732

RESUMO

Brochothrix thermosphacta is a dominant but poorly studied meat spoilage organism. It is a close relative of the foodborne pathogen Listeria monocytogenes, and Brochothrix constitutes the second genus in the Listeriaceae family. Here, the genomes of 12 B. thermosphacta strains were sequenced, assembled into draft genomes, characterized, and compared with the genomes of Brochothrix campestris and L. monocytogenes Phenotypic properties including biogenic amine production and antibiotic and heavy metal susceptibilities were tested. Comparative genomic analyses revealed a high degree of similarity among the B. thermosphacta strains, with bacteriophage genes constituting a significant proportion of the accessory genome. Genes for the production of the malodorous compounds acetate, acetoin, butanediol, and fatty acids were found, as were stress response regulatory genes, which likely play important roles in the spoilage process. Amino acid decarboxylases were not identified in the genomes, and phenotypic testing confirmed their absence. Orthologs of Listeria virulence proteins involved in virulence regulation, intracellular survival, and surface protein anchoring were found; however, key virulence genes were absent. Analysis of antibiotic susceptibility showed that strains were sensitive to the four tested antibiotics, except for one tetracycline-resistant isolate with plasmid-mediated tetracycline resistance genes. Strains tolerated higher levels of copper and cobalt than of cadmium although not at concentrations high enough to categorize the strains as being resistant. This study provides insight into the Brochothrix genome, links previous phenotypic data and data provided here to the gene inventory, and identifies genes that may contribute to the persistence of this organism in the food chain.IMPORTANCE Despite increasing knowledge and advances in food preservation techniques, microbial spoilage of foods causes substantial losses, with negative social and economic consequences. To better control the contamination and microbial spoilage of foods, fundamental knowledge of the biology of key spoilage bacteria is crucial. As a common meat spoilage organism, B. thermosphacta contributes substantially to spoilage-associated losses. Nonetheless, this organism and particularly its genome remain largely unstudied. This study contributes to improving our knowledge of the Brochothrix genus. Spoilage-relevant pathways and genes that may play a role in the survival of this organism in a food processing environment were identified, linking previous phenotypic data and data provided here to the gene inventory of Brochothrix and establishing parallels to and differences from the closely related foodborne pathogen L. monocytogenes.


Assuntos
Brochothrix/genética , Microbiologia de Alimentos , Genoma Bacteriano , Carne/microbiologia , Aminas/metabolismo , Antibacterianos/farmacologia , Bacteriófagos/genética , Brochothrix/classificação , Brochothrix/efeitos dos fármacos , Brochothrix/virologia , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Contaminação de Alimentos/análise , Manipulação de Alimentos , Embalagem de Alimentos , Conservação de Alimentos/métodos , Doenças Transmitidas por Alimentos/microbiologia , Regulação Bacteriana da Expressão Gênica/genética , Genes MDR/genética , Listeria monocytogenes/genética , Metais Pesados/farmacologia , Testes de Sensibilidade Microbiana , Fenótipo , Filogenia , Análise de Sequência de DNA , Estresse Fisiológico/genética , Virulência/genética , Fatores de Virulência/genética
9.
Food Microbiol ; 68: 71-80, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28800828

RESUMO

Packaging and storage temperature are important factors that influence the shelf-life of vacuum packed (VP) meat. In this study the shelf-life of VP bone-in lamb hind shanks stored at 8 °C and -1.2 °C was determined in parallel to analyses of starting and eventual spoilage bacterial communities via Illumina MiSeq based 16S rRNA amplicon sequencing. The mean total viable counts (TVC) and lactic acid bacterial viable counts (LAB) were observed to increase to log 7.5 CFU/cm2 and 7 CFU/cm2 after 6 and 42 days at 8 °C and -1.2 °C and stayed stable until shelf-life termination after 13 and 124 days, respectively. The sequence data showed initial communities were patchily distributed and were mainly derived from skin microbiome taxa likely prevalent within the abattoir. A broad diversity of VP meat associated specific spoilage organisms (SSO) were comparatively abundant in this initial population. Overtime meat spoilage communities developed a distinctive and stable microbiome. At -1.2 °C SSO included mainly Carnobacterium, Yersinia and Clostridium spp. while at 8 °C SSO expanded to include Hafnia, Lactococcus, Providencia spp. Growth curves inferred from the sequence data after taking into account rRNA copy number suggested that SSO growth rates were consistent with overall growth rates determined from TVC and LAB data and are predictable.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Carne/microbiologia , Animais , Bactérias/classificação , Bactérias/metabolismo , Meios de Cultura/metabolismo , Embalagem de Alimentos , Conservação de Alimentos , Armazenamento de Alimentos , Ovinos
10.
Microb Ecol ; 71(3): 589-603, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26780099

RESUMO

To better understand salmon GI tract microbial community dynamics in relation to diet, a feeding trial was performed utilising diets with different proportions of fish meal, protein, lipid and energy levels. Salmon gut dysfunction has been associated with the occurrence of casts, or an empty hind gut. A categorical scoring system describing expressed digesta consistency was evaluated in relation to GI tract community structure. Faster growing fish generally had lower faecal scores while the diet cohorts showed minor differences in faecal score though the overall lowest scores were observed with a low protein, low energy diet. The GI tract bacterial communities were highly dynamic over time with the low protein, low energy diet associated with the most divergent community structure. This included transiently increased abundance of anaerobic (Bacteroidia and Clostridia) during January and February, and facultatively anaerobic (lactic acid bacteria) taxa from February onwards. The digesta had enriched populations of these groups in relation to faecal cast samples. The majority of samples (60-86 %) across all diet cohorts were eventually dominated by the genus Aliivibrio. The results suggest that an interaction between time of sampling and diet is most strongly related to community structure. Digesta categorization revealed microbes involved with metabolism of diet components change progressively over time and could be a useful system to assess feeding responses.


Assuntos
Ração Animal/análise , Bactérias/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Salmo salar/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Digestão , Trato Gastrointestinal/metabolismo , Salmo salar/metabolismo
11.
Food Microbiol ; 57: 144-50, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27052713

RESUMO

Predictive models offer efficient means to manage the quality and safety of highly perishable seafood. Salmon is an increasingly popular seafood, and relies on well managed domestic and international supply chains to minimize growth of spoilage and pathogenic bacteria. While the literature describes predictive models for smoked and modified atmosphere packaged salmon, there are no reported models for spoilage bacteria and Listeria monocytogenes on head-on and gutted (HOG) aerobically-stored Atlantic salmon. Predictive models were developed for microbial and sensorial degradation of HOG Atlantic salmon stored at 0-15 °C until the end of shelf-life. Total Viable Count (TVC) and Pseudomonas spp. had similar growth rates at 0, 5 and 10 °C, but TVC rate was higher at 15 °C. L. monocytogenes growth rate at 0 °C was 0.004 log10 cfu/h, and showed a log-linear increase (R(2) = 0.99) to 0.079 log10 cfu/h at 15 °C. Sensory Quality Index (QI) scores were 2.4, 4.5, and 7.2 times greater at 5, 10 and 15 °C, respectively, compared to 0 °C. QI and TVC rates had a relatively strong relationship at 5 (R(2) = 0.87), 10 (R(2) = 0.80) and 15 °C (R(2) = 0.78), compared to 0 °C (R(2) = 0.50). These models are potential tools to manage the safety and quality of HOG Atlantic salmon in supply chains.


Assuntos
Bactérias/crescimento & desenvolvimento , Salmo salar/microbiologia , Alimentos Marinhos/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Temperatura Baixa , Feminino , Contaminação de Alimentos/análise , Armazenamento de Alimentos , Humanos , Masculino , Modelos Biológicos , Alimentos Marinhos/microbiologia , Paladar
12.
Appl Environ Microbiol ; 81(8): 2753-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25662972

RESUMO

The formation of bacterial spoilage communities in food is influenced by both extrinsic and intrinsic environmental factors. Although many reports describe how these factors affect bacterial growth, much less is known about interactions among bacteria, which may influence community structure. This study investigated interactions among representative species of bacteria isolated from vacuum-packaged (VP) beef. Thirty-nine effectors and 20 target isolates were selected, representing 10 bacterial genera: Carnobacterium, Pseudomonas, Hafnia, Serratia, Yersinia, Rahnella, Brochothrix, Bacillus, Leuconostoc, and Staphylococcus. The influence of live effectors on growth of target isolates was measured by spot-lawn agar assay and also in liquid culture medium broth using live targets and effector cell-free supernatants. Inhibition on agar was quantified by diameter of inhibition zone and in broth by measuring detection time, growth rate, and maximum population density. A number of interactions were observed, with 28.6% of isolates inhibiting and 4.2% promoting growth. The majority of Pseudomonas isolates antagonized growth of approximately one-half of target isolates. Two Bacillus spp. each inhibited 16 targets. Among lactic acid bacteria (LAB), Carnobacterium maltaromaticum inhibited a wider range of isolates compared to other LAB. The majority of effector isolates enhancing target isolate growth were Gram-negative, including Pseudomonas spp. and Enterobacteriaceae. These findings markedly improve the understanding of potential interactions among spoilage bacteria, possibly leading to more mechanistic descriptions of bacterial community formation in VP beef and other foods.


Assuntos
Embalagem de Alimentos , Microbiota/fisiologia , Carne Vermelha/microbiologia , Matadouros , Antibiose , Austrália , Contagem de Colônia Microbiana , Vácuo
13.
Food Microbiol ; 44: 136-41, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25084655

RESUMO

The bacterial diversity and structure of Poro cheese, an artisanal food, was analysed by high-throughput sequencing (454 pyrosequencing) in order to gain insight about changes in bacterial communities associated with the cheese-making process. Dairy samples consisting of milk, fermented whey, curd and ripened cheese (during 7 and 60 d) were collected from three manufacturers located in the state of Tabasco, México during dry (March-June) and rainy (August-November) seasons. Independently of producer and season, raw milk samples displayed the highest diversity in bacterial communities. In raw milk, genera found were Macrococcus, Staphylococcus, Enterococcus, Streptococcus, Lactobacillus and Enhydrobacter. Diversity in whey, curd and cheese was lower, principally containing Streptococcus and Lactobacillus; however, bacteria such as Staphylococcus, Acinetobacter, Chryseobacterium, Bacillus, Sediminibacter, Lactococcus and Enterococcus were occasionally present. After curdling step, the most dominant and abundant species were Streptococcus thermophilus and Lactobacillus delbrueckii.


Assuntos
Bactérias/isolamento & purificação , Queijo/microbiologia , Leite/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , México
14.
Food Microbiol ; 36(2): 305-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24010611

RESUMO

Packaging fresh lamb in a vacuum (VAC) versus a 100% CO2 modified atmosphere (MAP) may influence product shelf-life and the bacterial communities. While VAC is a common packing method and 100% CO2 MAP is used in some countries, there is little information about how these different techniques affect the growth of spoilage bacteria and sensory attributes of lamb. The aim of this study was to assess changes in microbiological and organoleptic properties, and determine differences in microbial communities by terminal restriction fragment length polymorphism (TRFLP) and 454 pyrosequencing, in bone-in (BI) and bone-out (BO) MAP- and VAC-packed lamb shoulders stored at -0.3 °C over 12 wk. VAC and MAP lamb shoulders were acceptable in sensory test scores over 12 wk of storage at -0.3 °C, despite total viable count (TVC) and lactic acid bacteria (LAB) levels increasing to 8 log10 CFU/cm(2) for VAC lamb and 4-6 log10 CFU/cm(2) for MAP lamb. Similar to the sensory results, there were no significant differences in microbial communities between BI and BO product. However, types of bacteria were different between VAC and MAP packaging. Specifically, while VAC shoulder became dominated by Carnobacterium spp. in the middle of the storage period, the MAP shoulder microbial population remained similar from the start until later storage times.


Assuntos
Bactérias/crescimento & desenvolvimento , Embalagem de Alimentos/métodos , Carne/análise , Carne/microbiologia , Odorantes/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Embalagem de Alimentos/instrumentação , Armazenamento de Alimentos , Ovinos
15.
Food Microbiol ; 34(2): 369-75, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23541204

RESUMO

Microbial contamination of carcass surfaces occurs during slaughter and post-slaughter processing steps, therefore interventions are needed to enhance meat safety and quality. Although many studies have been done at the macro-level, little is known about specific processes that influence bacterial attachment to carcass surfaces, particularly the role of extracellular matrix (ECM) proteins. In the present study, the effect of pH and salt (NaCl, KCl and CaCl2) on attachment of Escherichia coli and Salmonella isolates to dominant ECM proteins: collagen I, fibronectin, collagen IV and laminin were assessed. Also, the effects of three chemical rinses commonly used in abattoirs (2% acetic acid, 2% lactic acid and 10% trisodium phosphate (TSP)) were tested. Within a pH range of 5-9, there was no significant effect on attachment to ECM proteins, whereas the effect of salt type and concentration varied depending on combination of strain and ECM protein. A concentration-dependant effect was observed with NaCl and KCl (0.1-0.85%) on attachment of E. coli M23Sr, but only to collagen I. One-tenth percent CaCl2 produced the highest level of attachment to ECM proteins for E. coli M23Sr and EC614. In contrast, higher concentrations of CaCl2 increased attachment of E. coli EC473 to collagen IV. Rinses containing TSP produced >95% reduction in attachment to all ECM proteins. These observations will assist in the design of targeted interventions to prevent or disrupt contamination of meat surfaces, thus improving meat safety and quality.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Cloreto de Cálcio/farmacologia , Escherichia coli/fisiologia , Proteínas da Matriz Extracelular/química , Matriz Extracelular/microbiologia , Cloreto de Potássio/farmacologia , Salmonella/fisiologia , Cloreto de Sódio/farmacologia , Escherichia coli/efeitos dos fármacos , Matriz Extracelular/química , Concentração de Íons de Hidrogênio , Salmonella/efeitos dos fármacos
16.
Food Chem ; 404(Pt B): 134738, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36332582

RESUMO

The effects of air thawing, water thawing, slightly acidic electrolyzed water thawing, ultrasound-assisted water thawing (WUT) and ultrasound-assisted slightly acidic electrolyzed water thawing (EUT) on the myofibrillar protein conformation and gel quality of chicken breasts were investigated. In the EUT group, protein solubility was higher (52.43%) than other thawing groups, and particle size was 24.57% smaller than the control group. Gel of EUT and WUT groups had stronger elasticities than the control group. Gel whiteness level was not significantly different between the EUT and control group. Gel water holding capacity of the EUT group was 9.07% greater than the control group. Gel water distributions and mobilities of the EUT and WUT groups were closer to the control group. The gel of the EUT group had a compact and homogeneous network. In conclusion, EUT treatment effectively reduced conformation disruption and improved gel properties, which was conducive to producing gel products.


Assuntos
Galinhas , Água , Animais , Proteínas Musculares , Solubilidade , Conformação Proteica
17.
Appl Environ Microbiol ; 78(6): 1675-81, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22247136

RESUMO

Postharvest growth of Vibrio vulnificus in oysters can increase risk of human infection. Unfortunately, limited information is available regarding V. vulnificus growth and survival patterns over a wide range of storage temperatures in oysters harvested from different estuaries and in different oyster species. In this study, we developed a predictive model for V. vulnificus growth in Eastern oysters (Crassostrea virginica) harvested from Chesapeake Bay, MD, over a temperature range of 5 to 30°C and then validated the model against V. vulnificus growth rates (GRs) in Eastern and Asian oysters (Crassostrea ariakensis) harvested from Mobile Bay, AL, and Chesapeake Bay, VA, respectively. In the model development studies, V. vulnificus was slowly inactivated at 5 and 10°C with average GRs of -0.0045 and -0.0043 log most probable number (MPN)/h, respectively. Estimated average growth rates at 15, 20, 25, and 30°C were 0.022, 0.042, 0.087, and 0.093 log MPN/h, respectively. With respect to Eastern oysters, bias (B(f)) and accuracy (A(f)) factors for model-dependent and -independent data were 1.02 and 1.25 and 1.67 and 1.98, respectively. For Asian oysters, B(f) and A(f) were 0.29 and 3.40. Residual variations in growth rate about the fitted model were not explained by season, region, water temperature, or salinity at harvest. Growth rate estimates for Chesapeake Bay and Mobile Bay oysters stored at 25 and 30°C showed relatively high variability and were lower than Food and Agricultural Organization (FAO)/WHO V. vulnificus quantitative risk assessment model predictions. The model provides an improved tool for designing and implementing food safety plans that minimize the risk associated with V. vulnificus in oysters.


Assuntos
Crassostrea/microbiologia , Microbiologia de Alimentos , Modelos Biológicos , Modelos Estatísticos , Vibrio vulnificus/crescimento & desenvolvimento , Animais , Maryland , Viabilidade Microbiana , Água do Mar , Temperatura , Fatores de Tempo
18.
Food Microbiol ; 31(2): 263-70, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22608232

RESUMO

Seven blue crab processing plants were sampled to determine the prevalence and sources of Listeria spp. and Listeria monocytogenes for two years (2006-2007). A total of 488 raw crabs, 624 cooked crab meat (crab meat) and 624 environmental samples were tested by standard methods. Presumptive Listeria spp. were isolated from 19.5% of raw crabs, 10.8% of crab meat, and 69.5% of environmental samples. L. monocytogenes was isolated from 4.5% of raw crabs, 0.2% of crab meat, and 2.1% of environmental samples. Ninety-seven percent of the isolates were resistant to at least one of the ten antibiotics tested. Eight different serotypes were found among 76 L. monocytogenes isolates tested with the most common being 4b, 1/2b and 1/2a. Automated EcoRI ribotyping differentiated 11 ribotypes among the 106 L. monocytogenes isolates. Based on ribotyping analysis, the distribution of the ribotypes in each processing plant had a unique contamination pattern. A total of 92 ApaI and 88 AscI pulsotypes among the 106 L. monocytogenes isolates were found and distinct pulsotypes were observed in raw crab, crab meat and environmental samples. Ribotypes and serotypes recovered from crab processing plants included subtypes that have been associated with listeriosis cases in other food outbreaks. Our findings suggest that molecular methods may provide critical information about sources of L. monocytogenes in crab processing plants and will augment efforts to improve food safety control strategies such as targeting specific sources of contamination and use of aggressive detergents prior to sanitizing.


Assuntos
Braquiúros/microbiologia , Manipulação de Alimentos/estatística & dados numéricos , Listeria monocytogenes/isolamento & purificação , Carne/microbiologia , Alimentos Marinhos/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Contaminação de Alimentos/análise , Contaminação de Alimentos/estatística & dados numéricos , Listeria monocytogenes/classificação , Listeria monocytogenes/genética
19.
Int J Food Microbiol ; 370: 109635, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35339915

RESUMO

Primary and secondary models were developed for quantitatively characterizing the survival of Listeria monocytogenes in soy-sauce based acidified Asian style products that do not undergo a thermal treatment. The objective of this study was to quantify the effect of food matrix properties on L. monocytogenes' survival in soy sauce-based products. This quantification enables a product-specific estimation of 5-log reduction time to ensure a safe processing and management operation, to ultimately facilitate a science-based, safety-oriented product development process. A central composite design with four independent variables (pH, soy sauce, added NaCl and soluble solids) with five levels was used to plan the challenge studies on different formulations. To model microbial survival over time, different non-linear primary models were fit to the data obtained from challenge studies. The best-fit model was selected based on a series of statistical goodness-of-fit measures. Kinetic parameters estimated from the best-fit primary models were fit to response surface equations using second order polynomial regression. The best-fit primary model representative of the product formulations was a modified Weibull model. The natural logarithm of the scale parameter (δ, in h) was used as the response variable for the secondary model. This resulted in acceptable fitting compared to the observed values with R2 values of 0.95 and RMSE of 0.7 h. External validity of model predictions was conducted by comparing them to 5-log reduction times observed in independent challenge tests using different product formulations. Results indicated an acceptable validation with R2 = 0.81 and RMSE = 35 h. The present study provides quantitative tools specific for cold-fill-hold soy sauce-based products to enhance microbial safety management plans and product development.


Assuntos
Listeria monocytogenes , Alimentos de Soja , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Cinética , Modelos Biológicos
20.
Int J Food Microbiol ; 362: 109459, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34861562

RESUMO

Indonesian salted-boiled fish (pindang) is a popular traditional food in Indonesia, which is made from Scombroid fish such as tuna and mackerel. As with other traditionally prepared fish products, pindang has important economic and social values, especially for those living in the coastal areas of Indonesia. However, pindang is a major cause of histamine fish poisoning (HFP) for consumers. Klebsiella aerogenes T124, a relatively high histamine-producing isolate from pindang, was used to describe lag time (λ), growth rate (µmax), maximum population density (Nmax), and histamine production in histidine broth and artificially contaminated Grey mackerel. Broth was adjusted to 1.5, 6, 10 and 20% w/v NaCl; mackerel was treated with 6% w/w NaCl, a level common to Indonesian industry practice, or not treated with additional NaCl. Samples were incubated at 10, 15, 20 and 30 °C. In broth, µmax and Nmax were significantly affected by temperature and NaCl, respectively, with λ influenced by both parameters. In control fish, µmax was significantly affected by temperature and NaCl, except at 10 and 15 °C; for 6% NaCl treatment, growth was only observed at 20 and 30 °C. Under similar incubation conditions for broth and fish, histamine formation was markedly affected by NaCl concentration. In broth, -5.1 to -6.6 log µg of histamine was produced per CFU, versus -4.6 to -6.6 log µg per CFU in fish. This study demonstrated that mackerel treated with 6% NaCl and stored at 10-15 °C prevents growth of K. aerogenes strain TI24 and formation of toxic levels of histamine.


Assuntos
Enterobacter aerogenes , Histamina , Animais , Produtos Pesqueiros/análise , Indonésia , Atum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA