Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fetal Pediatr Pathol ; 37(4): 296-300, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30207817

RESUMO

BACKGROUND: Hereditary spherocytosis in the Hispanic population does not often present with severe hyperbilirubinemia. Spectrin and band 3 mutations are most frequent in this population. CASE REPORT: We present a Hispanic full-term female newborn with early onset significant hyperbilirubinemia without a history of familial hemolytic disorders. She was diagnosed with hereditary spherocytosis based on laboratory findings, including presence of spherocytes on a peripheral smear, and was later found by next-generation sequencing to have Tokyo-1 mutation, an ANK1 gene mutation, that was previously only reported in Japanese population. CONCLUSION: Our report adds to the currently limited literature of the genetic spectrum and characteristics of hereditary spherocytosis in the Hispanic population. The absence of a positive family history does not preclude hereditary spherocytosis as a differential for pathologic neonatal hyperbilirubinemia.


Assuntos
Anquirinas/deficiência , Hiperbilirrubinemia Neonatal/genética , Esferocitose Hereditária/genética , Anquirinas/genética , Códon sem Sentido , Feminino , Hispânico ou Latino/genética , Humanos , Recém-Nascido , Esferocitose Hereditária/complicações
2.
Clin Perinatol ; 51(1): 21-43, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38325942

RESUMO

Neonatal pulmonary hypertension (PH) is a devastating disorder of the pulmonary vasculature characterized by elevated pulmonary vascular resistance and mean pulmonary arterial pressure. Occurring predominantly because of maldevelopment or maladaptation of the pulmonary vasculature, PH in neonates is associated with suboptimal short-term and long-term outcomes because its pathobiology is unclear in most circumstances, and it responds poorly to conventional pulmonary vasodilators. Understanding the pathogenesis and pathophysiology of neonatal PH can lead to novel strategies and precise therapies. The review is designed to achieve this goal by summarizing pulmonary vascular development and the pathogenesis and pathophysiology of PH associated with maladaptation, bronchopulmonary dysplasia, and congenital diaphragmatic hernia based on evidence predominantly from preclinical studies. We also discuss the pros and cons of and provide future directions for preclinical studies in neonatal PH.


Assuntos
Displasia Broncopulmonar , Hérnias Diafragmáticas Congênitas , Hipertensão Pulmonar , Recém-Nascido , Humanos , Pulmão , Resistência Vascular , Hérnias Diafragmáticas Congênitas/terapia
3.
Front Cell Dev Biol ; 11: 1245747, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38481391

RESUMO

Background: Intra-amniotic inflammation (IAI) is associated with increased risk of preterm birth and bronchopulmonary dysplasia (BPD), but the mechanisms by which IAI leads to preterm birth and BPD are poorly understood, and there are no effective therapies for preterm birth and BPD. The transcription factor c-Myc regulates various biological processes like cell growth, apoptosis, and inflammation. We hypothesized that c-Myc modulates inflammation at the maternal-fetal interface, and neonatal lung remodeling. The objectives of our study were 1) to determine the kinetics of c-Myc in the placenta, fetal membranes and neonatal lungs exposed to IAI, and 2) to determine the role of c-Myc in modulating inflammation at the maternal-fetal interface, and neonatal lung remodeling induced by IAI. Methods: Pregnant Sprague-Dawley rats were randomized into three groups: 1) Intra-amniotic saline injections only (control), 2) Intra-amniotic lipopolysaccharide (LPS) injections only, and 3) Intra-amniotic LPS injections with c-Myc inhibitor 10058-F4. c-Myc expression, markers of inflammation, angiogenesis, immunohistochemistry, and transcriptomic analyses were performed on placenta and fetal membranes, and neonatal lungs to determine kinetics of c-Myc expression in response to IAI, and effects of prenatal systemic c-Myc inhibition on lung remodeling at postnatal day 14. Results: c-Myc was upregulated in the placenta, fetal membranes, and neonatal lungs exposed to IAI. IAI caused neutrophil infiltration and neutrophil extracellular trap (NET) formation in the placenta and fetal membranes, and neonatal lung remodeling with pulmonary hypertension consistent with a BPD phenotype. Prenatal inhibition of c-Myc with 10058-F4 in IAI decreased neutrophil infiltration and NET formation, and improved neonatal lung remodeling induced by LPS, with improved alveolarization, increased angiogenesis, and decreased pulmonary vascular remodeling. Discussion: In a rat model of IAI, c-Myc regulates neutrophil recruitment and NET formation in the placenta and fetal membranes. c-Myc also participates in neonatal lung remodeling induced by IAI. Further studies are needed to investigate c-Myc as a potential therapeutic target for IAI and IAI-associated BPD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA