Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Platelets ; 34(1): 2267676, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37849076

RESUMO

Inherited thrombocytopenia (IT) is a group of hereditary disorders characterized by a reduced platelet count as the main clinical manifestation, and often with abnormal platelet function, which can subsequently lead to impaired hemostasis. In the past decades, humanized mouse models (HMMs), that are mice engrafted with human cells or genes, have been widely used in different research areas including immunology, oncology, and virology. With advances of the development of immunodeficient mice, the engraftment, and reconstitution of functional human platelets in HMM permit studies of occurrence and development of platelet disorders including IT and treatment strategies. This article mainly reviews the development of humanized mice models, the construction methods, research status, and problems of using humanized mice for the in vivo study of human thrombopoiesis.


Humanized mouse models (HMMs) refer to immunodeficient mice that have been used for the investigation of human hematopoiesis and immunity for years. With engrafted human hematopoietic stem cells (HSCs), the differentiation process of HSCs and re-construction of platelets can be monitored in the mice. Until now, several strains of HMMs have been used in the studies of inherited thrombocytopenia (IT), a genetic disorder associated with low platelet count in the blood. In this study, we reviewed the development of these HMMs in IT studies, compared the different sources of HSCs transplanted into HMMs and summarize the strategies of HSC transplantation in HMMs. The Kit−/− immunodeficient mice showed effectively long-term and stable implantation of human HSC without irradiation and higher implantation levels, and they also support multilinear differentiation of human HSC, such as platelets and red blood cells. The source and count of HSCs and the transplantation strategy may also impact the result. This study provides a basis information for HMMs used in IT and will help other investigators in this field choosing the right research plan.


Assuntos
Transtornos Plaquetários , Transplante de Células-Tronco Hematopoéticas , Trombocitopenia , Animais , Camundongos , Humanos , Modelos Animais de Doenças , Plaquetas , Trombopoese , Trombocitopenia/genética , Transplante de Células-Tronco Hematopoéticas/métodos
2.
Platelets ; 33(3): 443-450, 2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-34101524

RESUMO

Inherited thrombocytopenia 2 (THC2) is difficult to diagnose due to the lack of specific clinical characteristics and diagnostic methods. To identify potential plasma protein biomarkers for THC2, we collected the plasma samples from a THC2 family (9 THC2 and 15 non-THC2 members), enriched the medium and low abundant proteins using Proteominer and analyzed the protein profiles using the liquid chromatography-mass spectrometry in data independent acquisition mode. Initially, we detected 784 proteins in the plasma samples of this family and identified 27 up-regulated and 36 down-regulated in the THC2 group compared to the non-THC2 group (|log2 ratio| >1 and p-value <0.05). To improve the predictive power, top eight dysregulated proteins (B7Z2B4, LTF, HP, ERN1, IGHV1-8, A0A0X9V9C4, VH6DJ, and D3JV41) were selected by an area under the curve-based random forest process to construct a clinical model. Multivariate analysis with random forest and support vector machine showed that the prediction model provided high discrimination ability for THC2 diagnosis (AUC: 1.000 and 0.967, respectively). The potential plasma protein biomarkers will be tested in more THC2 patients and other thrombocytopenia patients to further validate their specificity and sensitivity.


Assuntos
Biomarcadores/sangue , Proteínas Sanguíneas/metabolismo , Proteômica/métodos , Trombocitopenia/diagnóstico , Feminino , Humanos , Masculino , Trombocitopenia/patologia
3.
Platelets ; 33(5): 755-763, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34697988

RESUMO

Megakaryocytes (MKs) are the unique non-pathological cells that undergo polyploidization in mammals. The polyploid formation is critical for understanding the MK biology, and transcriptional regulation is involved in the differentiation and maturation of MKs. However, little is known about the functions of transcriptional elongation factors in the MK polyploidization. In this study, we investigated the role of transcription elongation factor EloA in the polyploidy formation during the MK differentiation. We found that EloA was highly expressed in the erythroleukemia cell lines HEL and K562. Knockdown of EloA in HEL cell line was shown to impair the phorbol myristate acetate (PMA) induced polyploidization process, which was used extensively to model megakaryocytic differentiation. Selective over-expression of EloA mutants with Pol II elongation activity partially restored the polyploidization. RNA-sequencing revealed that knockdown of EloA decelerated the transcription of genes enriched in the ERK1/2 cascade pathway. The phosphorylation activity of ERK1/2 decreased upon the EloA inhibition, and the polyploidization process of HEL was hindered when ERK1/2 phosphorylation was inhibited by PD0325901 or SCH772984. This study evidenced a positive role of EloA in HEL polyploidization upon PMA stimulation through enhanced ERK1/2 activity.


Assuntos
Sistema de Sinalização das MAP Quinases , Megacariócitos , Diferenciação Celular , Humanos , Megacariócitos/metabolismo , Poliploidia , Acetato de Tetradecanoilforbol/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
4.
J Sep Sci ; 41(12): 2651-2660, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29573136

RESUMO

For lead compound discovery from natural products, hollow fiber cell fishing with chromatographic analysis is a newly developed method. In this study, an adsorbed hollow fiber-based biological fingerprinting method was firstly developed to discover potential platelet aggregation inhibitors from Danshen-Honghua decoction. Platelets were seeded on the fiber and their survival rate was tested. Results indicated that more than 92% platelets survived during the whole operation process. Ranitidine and tirofiban were used as positive and negative control respectively to verify the reliability of the presented approach. The main variables such as amount of extract and stirring time that affect the adsorbed hollow fiber-based biological fingerprinting process were optimized, and the repeatability of this method was also investigated. Finally, 12 potential active compounds in Danshen-Honghua decoction were successfully detected using the established approach and structures for nine of them were tentatively identified by liquid chromatography with mass spectrometry analysis. In addition, the in vitro platelet aggregation inhibition test was carried out for five of the nine hit compounds, and three active components, namely, lithospermic acid, salvianolic acid A, and salvianolic acid B were confirmed. These results proved that the proposed method could be an effective approach for screening platelet inhibitors from plant extracts.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas/métodos , Inibidores da Agregação Plaquetária/química , Salvia miltiorrhiza/química , Animais , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Carthamus tinctorius/química , Medicamentos de Ervas Chinesas/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Coelhos
5.
World J Stem Cells ; 16(5): 538-550, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38817334

RESUMO

BACKGROUND: Thrombocytopenia 2, an autosomal dominant inherited disease characterized by moderate thrombocytopenia, predisposition to myeloid malignancies and normal platelet size and function, can be caused by 5'-untranslated region (UTR) point mutations in ankyrin repeat domain containing 26 (ANKRD26). Runt related transcription factor 1 (RUNX1) and friend leukemia integration 1 (FLI1) have been identified as negative regulators of ANKRD26. However, the positive regulators of ANKRD26 are still unknown. AIM: To prove the positive regulatory effect of GATA binding protein 2 (GATA2) on ANKRD26 transcription. METHODS: Human induced pluripotent stem cells derived from bone marrow (hiPSC-BM) and urothelium (hiPSC-U) were used to examine the ANKRD26 expression pattern in the early stage of differentiation. Then, transcriptome sequencing of these iPSCs and three public transcription factor (TF) databases (Cistrome DB, animal TFDB and ENCODE) were used to identify potential TF candidates for ANKRD26. Furthermore, overexpression and dual-luciferase reporter experiments were used to verify the regulatory effect of the candidate TFs on ANKRD26. Moreover, using the GENT2 platform, we analyzed the relationship between ANKRD26 expression and overall survival in cancer patients. RESULTS: In hiPSC-BMs and hiPSC-Us, we found that the transcription levels of ANKRD26 varied in the absence of RUNX1 and FLI1. We sequenced hiPSC-BM and hiPSC-U and identified 68 candidate TFs for ANKRD26. Together with three public TF databases, we found that GATA2 was the only candidate gene that could positively regulate ANKRD26. Using dual-luciferase reporter experiments, we showed that GATA2 directly binds to the 5'-UTR of ANKRD26 and promotes its transcription. There are two identified binding sites of GATA2 that are located 2 kb upstream of the TSS of ANKRD26. In addition, we discovered that high ANKRD26 expression is always related to a more favorable prognosis in breast and lung cancer patients. CONCLUSION: We first discovered that the transcription factor GATA2 plays a positive role in ANKRD26 transcription and identified its precise binding sites at the promoter region, and we revealed the importance of ANKRD26 in many tissue-derived cancers.

6.
Front Oncol ; 12: 983874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276066

RESUMO

Nanomedicines are considered one of the promising strategies for anticancer therapy; however, the low targeting efficiency of nanomedicines in vivo is a great obstacle to their clinical applications. Camouflaging nanomedicines with either platelet membrane (PM) or platelet would significantly prolong the retention time of nanomedicines in the bloodstream, enhance the targeting ability of nanomedicines to tumor cells, and reduce the off-target effect of nanomedicines in major organs during the anticancer treatment. In the current review, the advantages of using PM or platelet as smart carriers for delivering nanomedicines to inhibit tumor growth, metastasis, and recurrence were summarized. The opportunities and challenges of this camouflaging strategy for anticancer treatment were also discussed.

7.
Front Oncol ; 12: 983724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185270

RESUMO

Cancer is still a leading cause of death worldwide and liquid biopsy is a powerful tool that can be applied to different stages of cancer screening and treatment. However, as the second most abundant cell type in the bloodstream, platelets are isolated through well-established and fast methods in clinic but their value as a BioSource of cancer biomarkers is relatively recent. Many studies demonstrated the bidirectional interaction between cancer cells and platelets. Platelets transfer various proteins (e.g., growth factors, cytokine, chemokines) and RNAs (e.g., mRNA, lncRNA, miRNA, circRNA) into the tumor cells and microenvironment, leading the stimulation of tumor growth and metastasis. In turn, the platelet clinical characteristics (e.g., count and volume) and contents (e.g., RNA and protein) are altered by the interactions with cancer cells and this enables the early cancer detection using these features of platelets. In addition, platelet-derived microparticles also demonstrate the prediction power of being cancer biomarkers. In this review, we focus on the clinical applications of platelet detection using the platelet count, mean platelet volume, platelet RNA and protein profiles for human cancers and discuss the gap in bringing these implementations into the clinic.

8.
Front Genet ; 11: 340, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351539

RESUMO

Thrombocytopenia 2 (THC2) is one of the most prevalent forms of inherited thrombocytopenia. It is caused by a heterogeneous group of ANKRD26 gene mutation and shows a heterogeneous clinical and laboratory characteristics. We present a big Chinese family with 10 THC2 patients carrying c.-128G > T heterozygous substitution in the 5-untranslated region of the ANKRD26 gene. Although the platelets are fewer than 50 × 109/L in 8 THC2 family members, only the proband and her son show a higher WHO bleeding score. The proband and her son are also beta-thalassemia carriers with heterozygous c.52A > T mutation of HBB, which might not be associated with the increased bleeding tendency since 3 other family members with low bleeding tendency also carried both ANKRD26 c.-128G > T and HBB c.52A > T mutations. However, the proband and her son also show hypofibrinogenaemia, which is likely the cause of their more severe clinical manifestation. HID1 c.442G > T mutation was detected not only in these two hypofibrinogenaemia family members but also in the other 8 family members with normal blood fibrinogen levels. Our study suggests that the co-occurrence of other inherited genetic conditions associated with blood coagulation might contribute to the heterogeneity of clinical and laboratory characteristics in THC2 patients. Considering the hematologic and myeloid malignancy predisposition of THC2 patients and a large population of immune thrombocytopenia in China, we urge more attention to be paid to the diagnosis of THC2 patients to avoid misdiagnosis and mistreatment.

9.
Stem Cell Res ; 48: 102002, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32979630

RESUMO

Thrombocytopenia 2 (THC2) is a major type of inherited thrombocytopenia caused by the persistent ANKRD26 expression during the late stage of megakaryocytopoiesis. For the first time, we generated a human induced pluripotent stem cell (hiPSC) line SHAMUi001-A from the bone marrow hematopoietic progenitor cells of a THC2 patient, who has a heterozygous mutation (c.-128G>T) in the 5'-UTR of ANKRD26 gene. SHAMUi001-A cells retain the mutation, display pluripotent stem cell characteristics, and have a normal female karyotype. This disease-specific hiPSC line will be a useful model for THC2 research.


Assuntos
Células-Tronco Pluripotentes Induzidas , Regiões 5' não Traduzidas , Quebra Cromossômica , Feminino , Heterozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Mutação/genética
10.
J AOAC Int ; 102(3): 748-760, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388972

RESUMO

Background: Aloe barbadensis Miller 1768, A. vera L. var. chinensis (Haw.) Berger 1908, A. ferox Miller 1768, and A. arborescens Miller 1768 are the most widely cultivated species of Aloe and are used in Asia along with 400 other Aloe species worldwide because of their potent and potential bioactivity. Objective: The objective was to analyze and compare the soluble proteins of four commonly used medicinal Aloe species. Methods: Aloe protein samples were obtained by TCA/acetone-saturated phenol-methanol/ammonium acetate combined extraction (phenol extraction), and then were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis. Finally, the differentially expressed proteins of four Aloe species were identified by matrix-assisted laser desorption ionization-time-of-flight-MS analysis. Results: The phenol extraction method was the most suitable method for the protein extraction of Aloe. Fifty differentially expressed proteins in four Aloe species were successfully identified and divided into eight functional categories. Furthermore, Malate dehydrogenase and ran-binding protein in A. barbadensis, cytoskeletal-related protein tubulin in A. vera var. chinensis and auxin-induced protein PCNT-115 in A. arborescens are closely related to their morphological characteristics. Conclusions: There are differences in the soluble proteins of the four Aloe species. Those proteins, related to the difference of their morphology of Aloe, might be used to identify different species. Highlights: Fifty differentially expressed proteins in four medicinal Aloe species were identified, and these proteins were classified into eight categories according to their biological functions. Four special proteins closely related to the morphological characteristics of Aloe were found and might be used to identify these four Aloe species.


Assuntos
Aloe/química , Aloe/classificação , Proteínas de Plantas/análise , Eletroforese em Gel Bidimensional/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Folhas de Planta/química , Proteômica/métodos , Extração em Fase Sólida/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
11.
Phytomedicine ; 54: 231-239, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30668373

RESUMO

BACKGROUND: Dehydrocorydaline (DHC) and canadine (THB) are two active alkaloid compounds in Corydalis yanhusuo (Y.H. Chou & Chun C. Hsu) W.T. Wang ex Z.Y. Su & C.Y. Wu (Papaveraceae) (Rhizoma Corydalis). DHC and THC were previously shown to exert anti-platelet aggregation effect dose-dependently, but their exact mechanisms had not yet been addressed. Therefore, it is essential to study the mechanisms of DHC and THB affecting on platelet's function. PURPOSE: To investigate the anti-platelet effects and corresponding signal cascades of DHC and THB on platelet aggregation. METHODS: Firstly, in vitro anti-platelet aggregation of DHC and THB induced by different agonists including thrombin (THR), adenosine diphosphate (ADP) and arachidonic acid (AA) were determined through turbidimetry method. Then the possible target-related platelet proteins after treated with DHC/THB were separated and identified by two dimensional gel electrophoresis (2-DE) and MALDI-TOF-MS/MS analysis, respectively. Finally, the signal cascades network induced by DHC/THB were predicted through functional analysis of these proteins along with the determination of platelet DAG concentration. RESULTS: The platelet aggregation stimulated by THR, ADP and AA were inhibited by DHC and THB dose-dependently to a certain degree. Meanwhile, DHC and THB had the strongest effect on ADP- and THR-induced platelet aggregation respectively. In addition, treatment of these two compounds caused regulations of about sixty proteins in platelet, including cytoskeleton proteins, cell signaling proteins, proteins related to material energy metabolism, etc. CONCLUSIONS: Using proteomic analysis combined with platelet aggregation test and ELISA, this study was successful in exploring the possible mechanisms of DHC/THB on platelet aggregation. DHC might inhibit platelet aggregation by a mechanism involving the ADP receptors P2Y1 and P2Y12, and the effect of THB on platelet function may be related to its binding to THR receptor PAR1 for mediated Gi signaling pathway. These results provide fundamental information for the anti-thrombotic effect of RC.


Assuntos
Alcaloides/farmacologia , Berberina/análogos & derivados , Plaquetas/efeitos dos fármacos , Proteínas Sanguíneas/efeitos dos fármacos , Corydalis/química , Difosfato de Adenosina/farmacologia , Animais , Berberina/farmacologia , Ensaio de Imunoadsorção Enzimática , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Proteômica , Coelhos , Espectrometria de Massas em Tandem
12.
Food Funct ; 9(5): 2762-2773, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29687827

RESUMO

Citrus limon L. (lemon, family: Rutaceae) is the third most popular edible fruit among the Citrus species. Our previous study has shown the significant antiplatelet activity of lemon extracts. The aim of the present study is to identify the features (retention time, m/z) associated with the antiplatelet activity of lemons by correlating a platelet aggregation assay with ultra-performance liquid chromatography single quadrupole mass spectrometry-based chemometrics analysis. The primary bioactivity-guided test results revealed that the butanol (BA) and ethyl acetate (EA) liquid-liquid extraction sections of the ethanol extract of lemons had significant inhibitory effects on platelet aggregation. Upon further separating the combined BA and EA sections with a silica column, four different active fractions were obtained, and their LC-MS data were collected. After modeling by two multivariate statistical techniques, namely, principal component analysis and orthogonal partial least squares discriminate analysis seven markers were predicted, identified, and tentatively classified as priority markers of bioactivity in lemons. Among them, the antiplatelet activity of four marker compounds, namely, oxypeucedanin hydrate, citric acid, diosmin, and limetin at concentrations lower than 300 µM was confirmed. Moreover, the specific mechanism of limetin interaction with the TP ß receptor of thromboxane A2 and the effect of limetin on the PI3 K/Rap-1b signaling pathway through the ßγ subunit of GPCR (i) in platelet aggregation were studied by differential proteomic analysis to illustrate the validity and persistence of these markers for application in lemon fruit platforms.


Assuntos
Plaquetas/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Citrus/química , Extratos Vegetais/química , Inibidores da Agregação Plaquetária/química , Espectrometria de Massas em Tandem/métodos , Animais , Plaquetas/fisiologia , Frutas/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/isolamento & purificação , Inibidores da Agregação Plaquetária/farmacologia , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA