Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 254: 119155, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754614

RESUMO

Fungi play an important role in the mineralization and humification of refractory organic matter such as lignocellulose during composting. However, limited research on the ecological role of fungi in composting system hindered the development of efficient microbial agents. In this study, six groups of lab-scale composting experiments were conducted to reveal the role of fungal community in composting ecosystems by comparing them with bacterial community. The findings showed that the thermophilic phase was crucial for organic matter degradation and humic acid formation. The Richness index of the fungal community peaked at 1165 during this phase. PCoA analysis revealed a robust thermal stability in the fungal community. Despite temperature fluctuations, the community structure, predominantly governed by Pichia and Candida, remained largely unaltered. The stability of fungal community and the complexity of ecological networks were 1.26 times and 5.15 times higher than those observed in bacterial community, respectively. Fungi-bacteria interdomain interaction markedly enhanced network complexity, contributing to maintain microbial ecological functions. The core fungal species belonging to the family Saccharomycetaceae drove interdomain interaction during thermophilic phase. This study demonstrated the key role of fungi in the composting system, which would provide theoretical guidance for the development of high efficiency composting agents to strengthen the mineralization and humification of organic matter.

2.
Chemosphere ; 357: 142099, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653398

RESUMO

Vertical static composting is an efficient and convenient technology for the treatment of food waste. Exploring the impact of oxygen concentration levels on microbial community structure and functional stability is crucial for optimizing ventilation technology. This study set three experimental groups with varying ventilation intensities based on self-made alternating ventilation composting reactor (AL2: 0.2 L kg-1 DM·min-1; AL4: 0.4 L kg-1 DM·min-1; AL6: 0.6 L kg-1 DM·min-1) to explore the optimal alternating ventilation rate. The results showed that the cumulative ammonia emission of AL2 group reduced by 25.13% and 12.59% compared to the AL4 and AL6 groups. The humification degree of the product was 1.18 times and 1.25 times higher than the other two groups. AL2 increased the relative abundance of the core species Saccharomonospora, thereby strengthening microbial interaction. Low-intensity alternating ventilation increased the carbon metabolism levels, especially aerobic_chemoheterotrophy, carbohydrate and lipid metabolism. However, it simultaneously reduced nitrogen metabolism. Structural equation model analysis demonstrated that alternating low-intensity ventilation effectively regulated both microbial diversity (0.81, p < 0.001) and metabolism (0.81, p < 0.001) by shaping the composting environment. This study optimized the intensity of alternating ventilation and revealed the regulatory mechanism of community structure and metabolism. This study provides guidance for achieving efficient and low-consumption composting.


Assuntos
Carbono , Compostagem , Carbono/metabolismo , Compostagem/métodos , Alimentos , Interações Microbianas , Amônia/metabolismo , Nitrogênio/metabolismo , Substâncias Húmicas , Microbiologia do Solo , Solo/química , Eliminação de Resíduos/métodos , Perda e Desperdício de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA