RESUMO
Missense variants in the RNA-helicase DHX37 are associated with either 46,XY gonadal dysgenesis or 46,XY testicular regression syndrome (TRS). DHX37 is required for ribosome biogenesis, and this subgroup of XY DSD is a new human ribosomopathy. In a cohort of 140 individuals with 46,XY DSD, we identified 7 children with either 46,XY complete gonadal dysgenesis or 46,XY TRS carrying rare or novel DHX37 variants. A novel p.R390H variant within the RecA1 domain was identified in a girl with complete gonadal dysgenesis. A paternally inherited p.R487H variant, previously associated with a recessive congenital developmental syndrome, was carried by a boy with a syndromic form of 46,XY DSD. His phenotype may be explained in part by a novel homozygous loss-of-function variant in the NGLY1 gene, which causes a congenital disorder of deglycosylation. Remarkably, a homozygous p.T477H variant was identified in a boy with TRS. His fertile father had unilateral testicular regression with typical male genital development. This expands the DSD phenotypes associated with DHX37. Structural analysis of all variants predicted deleterious effects on helicase function. Similar to all other known ribosomopathies, the mechanism of pathogenesis is unknown.
Assuntos
Disgenesia Gonadal 46 XY , Disgenesia Gonadal , RNA Helicases/genética , Disgenesia Gonadal 46 XY/genética , Humanos , Masculino , Fenótipo , Testículo/anormalidadesRESUMO
Mutations in the pioneer transcription factor FOXA1 are a hallmark of estrogen receptor-positive (ER+) breast cancers. Examining FOXA1 in â¼5,000 breast cancer patients identifies several hotspot mutations in the Wing2 region and a breast cancer-specific mutation SY242CS, located in the third ß strand. Using a clinico-genomically curated cohort, together with breast cancer models, we find that FOXA1 mutations associate with a lower response to aromatase inhibitors. Mechanistically, Wing2 mutations display increased chromatin binding at ER loci upon estrogen stimulation, and an enhanced ER-mediated transcription without changes in chromatin accessibility. In contrast, SY242CS shows neomorphic properties that include the ability to open distinct chromatin regions and activate an alternative cistrome and transcriptome. Structural modeling predicts that SY242CS confers a conformational change that mediates stable binding to a non-canonical DNA motif. Taken together, our results provide insights into how FOXA1 mutations perturb its function to dictate cancer progression and therapeutic response.