Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 32(7): 2299-2315, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38715364

RESUMO

Current coronavirus disease 2019 vaccines face limitations including waning immunity, immune escape by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, limited cellular response, and poor mucosal immunity. We engineered a Clec9A-receptor binding domain (RBD) antibody construct that delivers the SARS-CoV-2 RBD to conventional type 1 dendritic cells. Compared with non-targeting approaches, single dose immunization in mice with Clec9A-RBD induced far higher RBD-specific antibody titers that were sustained for up to 21 months after vaccination. Uniquely, increasing neutralizing and antibody-dependent cytotoxicity activities across the sarbecovirus family was observed, suggesting antibody affinity maturation over time. Consistently and remarkably, RBD-specific follicular T helper cells and germinal center B cells persisted up to 12 months after immunization. Furthermore, Clec9A-RBD immunization induced a durable mono- and poly-functional T-helper 1-biased cellular response that was strongly cross-reactive against SARS-CoV-2 variants of concern, including Omicron subvariants, and with a robust CD8+ T cell signature. Uniquely, Clec9A-RBD single-shot systemic immunization effectively primed RBD-specific cellular and humoral immunity in lung and resulted in significant protection against homologous SARS-CoV-2 challenge as evidenced by limited body weight loss and approximately 2 log10 decrease in lung viral loads compared with non-immunized controls. Therefore, Clec9A-RBD immunization has the potential to trigger robust and sustained, systemic and mucosal protective immunity against rapidly evolving SARS-CoV2 variants.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Células Dendríticas , Imunidade nas Mucosas , Lectinas Tipo C , SARS-CoV-2 , Animais , Camundongos , Células Dendríticas/imunologia , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Humanos , Feminino , Glicoproteína da Espícula de Coronavírus/imunologia , Receptores Mitogênicos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Receptores Imunológicos
2.
Hlife ; 1(1): 26-34, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38994526

RESUMO

Multiple Omicron sub-lineages have emerged, with Omicron XBB and XBB.1.5 subvariants becoming the dominant variants globally at the time of this study. The key feature of new variants is their ability to escape humoral immunity despite the fact that there are limited genetic changes from their preceding variants. This raises the question of whether Omicron should be regarded as a separate serotype from viruses serologically clustered with the ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Here, we present cross-neutralization data based on a pseudovirus neutralization test using convalescent sera from naïve individuals who had recovered from primary infection by SARS-CoV-1 and SARS-CoV-2 strains/variants including the ancestral virus and variants Beta, Delta, Omicron BA.1, Omicron BA.2 and Omicron BA.5. The results revealed no significant cross-neutralization in any of the three-way testing for SARS-CoV-1, ancestral SARS-CoV-2 and SARS-CoV-2 Omicron subvariants. The data argue for the assignment of three distinct serotypes for the currently known human-infecting SARS-related coronaviruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA