Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163114

RESUMO

The Hypr cGAMP signaling pathway was discovered via the function of the riboswitch. In this study, we show the development of a method for affinity capture followed by sequencing to identify non-coding RNA regions that bind nucleotide signals such as cGAMP. The RNAseq of affinity-captured cGAMP riboswitches from the Geobacter sulfurreducens transcriptome highlights general challenges that remain for this technique. Furthermore, by applying riboswitch reporters in vivo, we identify new growth conditions and transposon mutations that affect cGAMP levels in G. sulfurreducens. This work reveals an extensive regulatory network and supports a second functional cGAMP synthase gene in G. sulfurreducens. The activity of the second synthase was validated using riboswitch-based fluorescent biosensors, and is the first known example of an active enzyme with a variant GGDDF motif.


Assuntos
Proteínas de Bactérias/metabolismo , Geobacter/metabolismo , Mutação , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/metabolismo , Riboswitch , Transcriptoma , Proteínas de Bactérias/genética , Geobacter/genética , Nucleotidiltransferases/genética , Transdução de Sinais
2.
Chembiochem ; 19(17): 1853-1857, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30126025

RESUMO

Fluorescence-activated cell sorting (FACS) offers a powerful approach to high-throughput library screening in directed evolution experiments. However, FACS is rarely used in the evolution of stereoselective enzymes, due to the difficulty of designing fluorescence-based assays for measuring enantiopurity. Here, we describe a new FACS-based enantiopurity analysis approach that overcomes these limitations by using enantiomeric DNA biosensors labeled with orthogonal fluorophores. By co-encapsulating the biosensors with a mixture of target enantiomers in microfluidic droplets, we could demonstrate the use of FACS to differentiate between droplets having various levels of target enantiopurity. We envision the utility of this method for high-throughput screening of enantiopurity in the directed evolution of stereoselective enzymes, thereby facilitating the discovery of new asymmetric biocatalysts for the synthesis of pharmaceuticals and other high-value chemicals.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , DNA/química , Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Tirosina/análogos & derivados , Alcanossulfonatos/química , Compostos Azo/química , Carbocianinas/química , Citometria de Fluxo/instrumentação , Fluorescência , Ensaios de Triagem em Larga Escala/métodos , Dispositivos Lab-On-A-Chip , Estereoisomerismo , Tirosina/análise
3.
J Am Chem Soc ; 138(20): 6328-31, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27159220

RESUMO

Aptamer-based sensors provide a versatile and effective platform for the detection of chemical and biological targets. These sensors have been optimized to function in multiple formats, however, a remaining limitation is the inability to achieve temporal control over their sensing function. To overcome this challenge, we took inspiration from nature's ability to temporally control the activity of enzymes and protein receptors through covalent self-caging. We applied this strategy to structure-switching aptamer sensors through the installation of a cleavable linker between the two DNA fragments that comprise the sensor. Analogous to self-caged proteins, installation of this linker shifts the equilibrium of the aptamer sensor to disfavor target binding. However, activity can be restored in a time-resolved manner by cleavage of the linker. To demonstrate this principle, we chose a photocleavable linker and found that installation of the linker eliminates target binding, even at high target concentrations. However, upon irradiation with 365 nm light, sensor activity is restored with response kinetics that mirror those of the linker cleavage reaction. A key benefit of our approach is generality, which is demonstrated by grafting the photocleavable linker onto a different aptamer sensor and showing that an analogous level of temporal control can be achieved for sensing of the new target molecule. These results demonstrate that nature's self-caging approach can be effectively applied to non-natural receptors to provide precise temporal control over function. We envision that this will be of especially high utility for deploying aptamer sensors in biological environments.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , DNA/química , Cinética
4.
Biochemistry ; 53(21): 3423-31, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24825256

RESUMO

1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), which catalyzes the first committed step in the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid biosynthesis used by Mycobacterium tuberculosis and other infectious microorganisms, is absent in humans and therefore an attractive drug target. Fosmidomycin is a nanomolar inhibitor of DXR, but despite great efforts, few analogues with comparable potency have been developed. DXR contains a strictly conserved residue, Trp203, within a flexible loop that closes over and interacts with the bound inhibitor. We report that while mutation to Ala or Gly abolishes activity, mutation to Phe and Tyr only modestly impacts kcat and Km. Moreover, pre-steady-state kinetics and primary deuterium kinetic isotope effects indicate that while turnover is largely limited by product release for the wild-type enzyme, chemistry is significantly more rate-limiting for W203F and W203Y. Surprisingly, these mutants are more sensitive to inhibition by fosmidomycin, resulting in Km/Ki ratios up to 19-fold higher than that of wild-type DXR. In agreement, isothermal titration calorimetry revealed that fosmidomycin binds up to 11-fold more tightly to these mutants. Most strikingly, mutation strongly tips the entropy-enthalpy balance of total binding energy from 50% to 75% and 91% enthalpy in W203F and W203Y, respectively. X-ray crystal structures suggest that these enthalpy differences may be linked to differences in hydrogen bond interactions involving a water network connecting fosmidomycin's phosphonate group to the protein. These results confirm the importance of the flexible loop, in particular Trp203, in ligand binding and suggest that improved inhibitor affinity may be obtained against the wild-type protein by introducing interactions with this loop and/or the surrounding structured water network.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Fosfomicina/análogos & derivados , Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/genética , Domínio Catalítico , Cristalografia por Raios X , Fosfomicina/química , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica , Termodinâmica , Xilulose/análogos & derivados , Xilulose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA